ﻻ يوجد ملخص باللغة العربية
Gravitational waves from binary black holes that are gravitationally lensed can be distorted by small microlenses along the line of sight. Microlenses with masses of a few tens of solar masses, and that are close to a critical curve in the lens plane, can introduce a time delay of a few millisecond. Such time delay would result in distinctive interference patterns in the gravitational wave that can be measured with current experiments such as LIGO/Virgo. We consider the particular case of primordial black holes with masses between 5 and 50 solar masses acting as microlenses. We study the effect of a population of primordial black holes constituting a fraction of the dark matter, and contained in a macrolens (galaxy or cluster), over gravitational waves that are being lensed by the combined effect of the macrolens plus microlenses. We find that at the typical magnifications expected for observed GW events, the fraction of dark matter in the form of compact microlenses, such as primordial black holes, can be constrained to percent level. Similarly, if a small percentage of the dark matter is in the form of microlenses with a few tens of solar masses, at sufficiently large magnification factors, all gravitational waves will show interference effects. These effects could have an impact on the inferred parameters. The effect is more important for macroimages with negative parity, which usually arrive after the macroimages with positive parity.
Primordial black holes (PBHs) have been proposed to explain at least a portion of dark matter. Observations have put strong constraints on PBHs in terms of the fraction of dark matter which they can represent, $f_{rm PBH}$, across a wide mass range -
We investigate the formation and growth of massive black hole (BH) seeds in dusty star-forming galaxies, relying and extending the framework proposed by Boco et al. 2020. Specifically, the latter envisages the migration of stellar compact remnants (n
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures
Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peak
Microlenses with typical stellar masses (a few ${rm M}_{odot}$) have traditionally been disregarded as potential sources of gravitational lensing effects at LIGO/Virgo frequencies, since the time delays are often much smaller than the inverse of the