ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 117214 debris disk: scattered-light images and constraints on the presence of planets

87   0   0.0 ( 0 )
 نشر من قبل Natalia Engler
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed observations of the Sco-Cen F star HD 117214 aiming at a search for planetary companions and the characterization of the debris disk structure. HD 117214 was observed with the SPHERE subsystems IRDIS, IFS and ZIMPOL at optical and near-IR wavelengths using angular and polarimetric differential imaging techniques. This provided the first images of scattered light from the debris disk with a spatial resolution reaching 25 mas and an inner working angle $< 0.1$. With the observations with IRDIS and IFS we derive detection limits for substellar companions. The geometrical parameters of the detected disk are constrained by fitting 3D models for the scattering of an optically thin dust disk. Investigating the possible origin of the disk gap, we introduced putative planets therein and modeled the planet-disk and planet-planet dynamical interactions. The obtained planetary architectures are compared with the detection limit curves. The debris disk has an axisymmetric ring structure with a radius of $0.42(pm 0.01)$ or $sim45$ au and an inclination of $71(pm 2.5)^circ$ and exhibits a $0.4$ ($sim40$ au) wide inner cavity. From the polarimetric data, we derive a polarized flux contrast for the disk of $(F_{rm pol})_{rm disk}/F_{rm ast}> (3.1 pm 1.2)cdot 10^{-4}$ in the RI band. The fractional scattered polarized flux of the disk is eight times smaller than the fractional infrared flux excess. This ratio is similar to the one obtained for the debris disk HIP 79977 indicating that dust radiation properties are not very different between these two disks. Inside the disk cavity we achieve the high sensitivity limits on planetary companions with a mass down to $sim 4 M_{rm J}$ at projected radial separations between $0.2$ and $0.4$. We can exclude the stellar companions at a radial separation larger than 75 mas from the star.



قيم البحث

اقرأ أيضاً

103 - D. Mesa , S. Marino , M. Bonavita 2021
Recent observations of resolved cold debris disks at tens of au have revealed that gaps could be a common feature in these Kuiper belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer-in near the edges of t he disk. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1-2 M Jup for planets located inside the gap and to less than 5 M Jup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the disks around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper motion anomaly of HD 107146 to values of 2-7 au and 2-5 M Jup , respectively.
We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively $sim45$ and $sim67$ pc away. We detected these systems in the F110W and F160W filters through our re-analysis of arc hival Hubble Space Telescope NICMOS data with modern starlight subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at radius $sim114$ au inclined $sim58$ degrees. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius $sim95$ au inclined by $sim59$ degrees, never resolved so far. These disks have low scattering albedos of 10% and 13% respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.
Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of p recisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (~10 Mjup planets around G--A-type stars) near the gap edges are less frequent than 15--30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.
74 - E. Choquet , J. Milli , Z. Wahhaj 2016
We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1 (65 AU) to 4.6 (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34). Comparison between the F110W and H-band images is consistent with a grey color of 49 cetis dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin.
We have carried out two sets of observations to quantify the properties of SiO gas in the unusual HD 172555 debris disk: (1) a search for the J=8-7 rotational transition from the vibrational ground state, carried out with the APEX sub-millimeter tele scope and heterodyne receiver at 863 microns, and (2) a search at 8.3 microns for the P(17) ro-vibrational transition of gas phase SiO, carried out with VLT/VISIR with a resolution, $lambda/Deltalambda$, of 30000. The APEX measurement resulted in a 3 $sigma$ non-detection of an interstellar feature, but only an upper limit to emission at the radial velocity and linewidth expected from HD 172555. The VLT/VISIR result was also an upper limit. These were used to provide limits for the abundance of gas phase SiO, for a range of temperatures. The upper limit from our APEX detection, assuming an 8000 K primary star photospheric excitation, falls more than an order of magnitude below the self-shielding stability threshold derived by Johnson et al. (2012). Our results thus favor a solid-state origin for the 8.3 micron feature seen in the Spitzer IRS spectrum of the circumstellar excess emission, and the production of circumstellar O$^+$ and Si$^+$ by SiO UV photolysis. The implications of these estimates are explored in the framework of models of the HD 172555 circumstellar disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا