ﻻ يوجد ملخص باللغة العربية
We report heat transfer and temperature profile measurements in laboratory experiments of rapidly rotating convection in water under intense thermal forcing (Rayleigh number $Ra$ as high as $sim 10^{13}$) and unprecedentedly strong rotational influence (Ekman numbers $E$ as low as $10^{-8}$). Measurements of the mid-height vertical temperature gradient connect quantitatively to predictions from numerical models of asymptotically rapidly rotating convection, separating various flow phenomenologies. Past the limit of validity of the asymptotically-reduced models, we find novel behaviors in a regime we refer to as rotationally-influenced turbulence, where rotation is important but not as dominant as in the known geostrophic turbulence regime. The temperature gradients collapse to a Rayleigh-number scaling as $Ra^{-0.2}$ in this new regime. It is bounded from above by a critical convective Rossby number $Ro^*=0.06$ independent of domain aspect ratio $Gamma$, clearly distinguishing it from well-studied rotation-affected convection.
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr appr
We numerically investigate turbulent Rayleigh-Benard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number $Nu$) in two-layer sys
We present results of interface-resolved simulations of heat transfer in suspensions of finite-size neutrally-buoyant spherical particles for solid volume fractions up to 35% and bulk Reynolds numbers from 500 to 5600. An Immersed Boundary-Volume of
To understand how internal flow structures manifest themselves in the global heat transfer, we study the correlation between different flow modes and the instantaneous Nusselt number ($Nu$) in a two-dimensional square Rayleigh-Benard convection cell.
The effect of rotation on the boundary layers (BLs) in a Rayleigh-Benard (RB) system at a relatively low Rayleigh number, i.e. $Ra = 4times10^7$, is studied for different Pr by direct numerical simulations and the results are compared with laminar BL