We highlight the principal results of a computation in the Color Glass Condensate effective field theory (CGC EFT) of the next-to-leading order (NLO) impact factor for inclusive photon+dijet production at Bjorken $x_{rm Bj} ll 1$ in deeply inelastic electron-nucleus (e+A DIS) collisions. When combined with extant results for next-to-leading log $x_{rm Bj}$ JIMWLK renormalization group (RG) evolution of gauge invariant two-point (dipole) and four-point (quadrupole) correlators of light-like Wilson lines, the inclusive photon+dijet e+A DIS cross-section can be determined to $sim 10$% accuracy. Our computation simultaneously provides the ingredients to compute fully inclusive DIS, inclusive photon, inclusive dijet and inclusive photon+jet channels to the same accuracy. This makes feasible quantitative extraction of many-body correlators of saturated gluons and precise determination of the saturation scale $Q_{S,A}(x_{rm Bj})$ at a future Electron-Ion Collider. An interesting feature of our NLO result is the structure of the violation of the soft gluon theorem in the Regge limit. Another is the appearance in gluon emission of time-like non-global logs which also satisfy JIMWLK RG evolution.