ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid text normalization system using multi-head self-attention for mandarin

467   0   0.0 ( 0 )
 نشر من قبل Junhui Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a hybrid text normalization system using multi-head self-attention. The system combines the advantages of a rule-based model and a neural model for text preprocessing tasks. Previous studies in Mandarin text normalization usually use a set of hand-written rules, which are hard to improve on general cases. The idea of our proposed system is motivated by the neural models from recent studies and has a better performance on our internal news corpus. This paper also includes different attempts to deal with imbalanced pattern distribution of the dataset. Overall, the performance of the system is improved by over 1.5% on sentence-level and it has a potential to improve further.



قيم البحث

اقرأ أيضاً

In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguis tic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets.
The state of the art in learning meaningful semantic representations of words is the Transformer model and its attention mechanisms. Simply put, the attention mechanisms learn to attend to specific parts of the input dispensing recurrence and convolu tions. While some of the learned attention heads have been found to play linguistically interpretable roles, they can be redundant or prone to errors. We propose a method to guide the attention heads towards roles identified in prior work as important. We do this by defining role-specific masks to constrain the heads to attend to specific parts of the input, such that different heads are designed to play different roles. Experiments on text classification and machine translation using 7 different datasets show that our method outperforms competitive attention-based, CNN, and RNN baselines.
Its natural these days for people to know the local events from massive documents. Many texts contain location information, such as city name or road name, which is always incomplete or latent. Its significant to extract the administrative area of th e text and organize the hierarchy of area, called location normalization. Existing detecting location systems either exclude hierarchical normalization or present only a few specific regions. We propose a system named ROIBase that normalizes the text by the Chinese hierarchical administrative divisions. ROIBase adopts a co-occurrence constraint as the basic framework to score the hit of the administrative area, achieves the inference by special embeddings, and expands the recall by the ROI (region of interest). It has high efficiency and interpretability because it mainly establishes on the definite knowledge and has less complex logic than the supervised models. We demonstrate that ROIBase achieves better performance against feasible solutions and is useful as a strong support system for location normalization.
We generalize deep self-attention distillation in MiniLM (Wang et al., 2020) by only using self-attention relation distillation for task-agnostic compression of pretrained Transformers. In particular, we define multi-head self-attention relations as scaled dot-product between the pairs of query, key, and value vectors within each self-attention module. Then we employ the above relational knowledge to train the student model. Besides its simplicity and unified principle, more favorably, there is no restriction in terms of the number of students attention heads, while most previous work has to guarantee the same head number between teacher and student. Moreover, the fine-grained self-attention relations tend to fully exploit the interaction knowledge learned by Transformer. In addition, we thoroughly examine the layer selection strategy for teacher models, rather than just relying on the last layer as in MiniLM. We conduct extensive experiments on compressing both monolingual and multilingual pretrained models. Experimental results demonstrate that our models distilled from base-size and large-size teachers (BERT, RoBERTa and XLM-R) outperform the state-of-the-art.
This paper proposes a neural network architecture for tackling the query-by-example user-defined keyword spotting task. A multi-head attention module is added on top of a multi-layered GRU for effective feature extraction, and a normalized multi-head attention module is proposed for feature aggregation. We also adopt the softtriple loss - a combination of triplet loss and softmax loss - and showcase its effectiveness. We demonstrate the performance of our model on internal datasets with different languages and the public Hey-Snips dataset. We compare the performance of our model to a baseline system and conduct an ablation study to show the benefit of each component in our architecture. The proposed work shows solid performance while preserving simplicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا