ﻻ يوجد ملخص باللغة العربية
Graph Neural Networks (GNNs) are efficient approaches to process graph-structured data. Modelling long-distance node relations is essential for GNN training and applications. However, conventional GNNs suffer from bad performance in modelling long-distance node relations due to limited-layer information propagation. Existing studies focus on building deep GNN architectures, which face the over-smoothing issue and cannot model node relations in particularly long distance. To address this issue, we propose to model long-distance node relations by simply relying on shallow GNN architectures with two solutions: (1) Implicitly modelling by learning to predict node pair relations (2) Explicitly modelling by adding edges between nodes that potentially have the same label. To combine our two solutions, we propose a model-agnostic training framework named HighwayGraph, which overcomes the challenge of insufficient labeled nodes by sampling node pairs from the training set and adopting the self-training method. Extensive experimental results show that our HighwayGraph achieves consistent and significant improvements over four representative GNNs on three benchmark datasets.
Message passing has evolved as an effective tool for designing Graph Neural Networks (GNNs). However, most existing works naively sum or average all the neighboring features to update node representations, which suffers from the following limitations
Recently, Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data, consisting of node features and the adjacent information between different nodes. High-performance GNN models always depend on both ric
Graph neural networks (GNNs) have been widely used in various graph-related problems such as node classification and graph classification, where the superior performance is mainly established when natural node features are available. However, it is n
Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data. There are several graph convolutional models that attempt to develop deep networks but do not cause serious over-smoothing at
Many popular variants of graph neural networks (GNNs) that are capable of handling multi-relational graphs may suffer from vanishing gradients. In this work, we propose a novel GNN architecture based on the Gated Graph Neural Network with an improved