ﻻ يوجد ملخص باللغة العربية
HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.
Segmented telescopes are a possibility to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the complexity of their aperture geometry, due to the central obstruction, support structures and s
High contrast imaging using coronagraphy is one of the main avenues to enable the search for life on extrasolar Earth analogs. The HiCAT testbed aims to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes as envision
Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to thermal variations and other
The challenges of high contrast imaging (HCI) for detecting exoplanets for both ground and space applications can be met with extreme adaptive optics (ExAO), a high-order adaptive optics system that performs wavefront sensing (WFS) and correction at
This paper presents the setup for empirical validations of the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) tolerancing model for segmented coronagraphy. We show the hardware configuration of the High-contrast image