ﻻ يوجد ملخص باللغة العربية
Understanding where and when the mass of stars is determined is one of the fundamental, mostly unsolved, questions in astronomy. Here, we present the first results of GASTON, the Galactic Star Formation with NIKA2 large programme on the IRAM 30m telescope, that aims to identify new populations of low-brightness sources to tackle the question of stellar mass determination across all masses. In this paper, we focus on the high-mass star formation part of the project, for which we map a $sim2$ deg$^2$ region of the Galactic plane around $l=24^circ$ in both 1.2 mm and 2.0 mm continuum. Half-way through the project, we reach a sensitivity of 3.7 mJy/beam at 1.2mm. Even though larger than our target sensitivity of 2 mJy, the current sensitivity already allows the identification of a new population of cold, compact sources that remained undetected in any (sub-)mm Galactic plane survey so far. In fact, about 25% of the $sim 1600$ compact sources identified in the 1.2 mm GASTON image are new detections. We present a preliminary analysis of the physical properties of the GASTON sources as a function of their evolutionary stage, arguing for a potential evolution of the mass distribution of these sources with time.
Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimetri
VISTA Variables in the V{i}a Lactea (VVV) is one of the six ESO Public Surveys operating on the new 4-meter Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where st
Pre-stellar cores represent the initial conditions of star formation. Although these initial conditions in nearby low-mass star-forming regions have been investigated in detail, such initial conditions remain vastly unexplored for massive star-formin
Despite the existence of well-defined relationships between cold gas and star formation, there is evidence that some galaxies contain large amounts of HI that do not form stars efficiently. By systematically assessing the link between HI and star for
We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84-00.81, which is located in one curved filamentary cloud in the vicinity of an extended HII region Sh2-152 and SNR G109.1-