ﻻ يوجد ملخص باللغة العربية
Knowledge Graph Completion (KGC) has been proposed to improve Knowledge Graphs by filling in missing connections via link prediction or relation extraction. One of the main difficulties for KGC is a low resource problem. Previous approaches assume sufficient training triples to learn versatile vectors for entities and relations, or a satisfactory number of labeled sentences to train a competent relation extraction model. However, low resource relations are very common in KGs, and those newly added relations often do not have many known samples for training. In this work, we aim at predicting new facts under a challenging setting where only limited training instances are available. We propose a general framework called Weighted Relation Adversarial Network, which utilizes an adversarial procedure to help adapt knowledge/features learned from high resource relations to different but related low resource relations. Specifically, the framework takes advantage of a relation discriminator to distinguish between samples from different relations, and help learn relation-invariant features more transferable from source relations to target relations. Experimental results show that the proposed approach outperforms previous methods regarding low resource settings for both link prediction and relation extraction.
Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especiall
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of e
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works using KG embeddings. While existing KG embedding approaches mainly learn a
Objective: To discover candidate drugs to repurpose for COVID-19 using literature-derived knowledge and knowledge graph completion methods. Methods: We propose a novel, integrative, and neural network-based literature-based discovery (LBD) approach t