ﻻ يوجد ملخص باللغة العربية
We make use of the IllustrisTNG cosmological, hydrodynamical simulations to test fundamental assumptions of the mass-based Halo Occupation Distribution (HOD) approach to modelling the galaxy-halo connection. By comparing the clustering of galaxies measured in the 300 Mpc TNG box (TNG300) with that predicted by the standard (``basic) HOD model, we find that, on average, the ``basic HOD model underpredicts the real-space correlation function in the TNG300 box by $sim$ 15% on scales of $1 {rm Mpc}/h < r < 20 {rm Mpc}/h$, which is well beyond the target precision demanded of next-generation galaxy redshift surveys. We perform several tests to establish the robustness of our findings to systematic effects, including the effect of finite box size and the choice of halo finder. In our exploration of ``secondary parameters with which to augment the ``basic HOD, we find that the local environment of the halo, the velocity dispersion anisotropy, $beta$, and the product of the half-mass radius and the velocity dispersion, $sigma^2 R_{rm halfmass}$, are the three most effective measures of assembly bias that help reconcile the ``basic HOD-predicted clustering with that in TNG300. In addition, we test other halo properties such as halo spin, formation epoch and halo concentration. We also find that at fixed halo mass, galaxies in one type of environment cluster differently from galaxies in another. We demonstrate that a more complete model of the galaxy-halo connection can be constructed if we combine both mass and local environment information about the halo.
Observations have indicated that the prestellar core mass function (CMF) is similar to the stellar initial mass function (IMF), except for an offset towards larger masses. This has led to the idea that there is a one-to-one relation between cores and
The standard Halo Occupation Distribution (HOD) models were originally developed based on results from semi-analytic and hydrodynamical galaxy formation models. Those models have since progressed, in particular to include AGN feedback to match the ga
The SKA and its pathfinders will enable studies of HI emission at higher redshifts than ever before. In moving beyond the local Universe, this will require the use of cosmologically appropriate formulae that have traditionally been simplified to thei
Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Desp
It has been claimed that the standard model of cosmology (LCDM) cannot easily account for a number of observations on relatively small scales, motivating extensions to the standard model. Here we introduce a new suite of cosmological simulations that