ترغب بنشر مسار تعليمي؟ اضغط هنا

The quest for high critical current in applied high-temperature superconductors

369   0   0.0 ( 0 )
 نشر من قبل Andreas Glatz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a perspective on a new critical-current-by-design paradigm to tailor and enhance the current-carrying capacity of applied superconductors. Critical current by design is based on large-scale simulations of vortex matter pinning in high-temperature superconductors and has qualitative and quantitative predictive powers to elucidate vortex dynamics under realistic conditions and to propose vortex pinning defects that could enhance the critical current, particularly at high magnetic fields. The simulations are validated with controlled experiments and demonstrate a powerful tool for designing high-performance superconductors for targeted applications.



قيم البحث

اقرأ أيضاً

71 - T. Valla , T. E. Kidd , Z.-H. Pan 2006
In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines t he superconducting transition temperature TC. One manifestation of electron-phonon coupling is a mass renormalization of the electronic dispersion at the energy scale associated with the phonons. This renormalization is directly observable in photoemission experiments. In contrast, there remains little consensus on the pairing mechanism in cuprate high temperature superconductors. The recent observation of similar renormalization effects in cuprates has raised the hope that the mechanism of high temperature superconductivity may finally be resolved. The focus has been on the low energy renormalization and associated kink in the dispersion at around 50 meV. However at that energy scale, there are multiple candidates including phonon branches, structure in the spin-fluctuation spectrum, and the superconducting gap itself, making the unique identification of the excitation responsible for the kink difficult. Here we show that the low-energy renormalization at ~50 meV is only a small component of the total renormalization, the majority of which occurs at an order of magnitude higher energy (~350 meV). This high energy kink poses a new challenge for the physics of the cuprates. Its role in superconductivity and relation to the low-energy kink remains to be determined.
We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigate d by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.
Generally, studies of the critical current Ic are necessary if superconductors are to be of practical use because Ic sets the current limit below which there is a zero-resistance state. Here, we report a peak in the pressure dependence of the zero-fi eld Ic, Ic(0), at a hidden quantum critical point (QCP), where a continuous antiferromagnetic transition temperature is suppressed by pressure toward 0 K in CeRhIn5 and 4.4% Sn-doped CeRhIn5. The Ic(0)s of these Ce-based compounds under pressure exhibit a universal temperature dependence, underlining that the peak in zero-field Ic(P) is determined predominantly by critical fluctuations associated with the hidden QCP. The dc conductivity is a minimum at the QCP, showing anti-correlation with Ic(0). These discoveries demonstrate that a quantum critical point hidden inside the superconducting phase in strongly correlated materials can be exposed by the zero-field Ic, therefore providing a direct link between a QCP and unconventional superconductivity.
122 - Wonkee Kim , Yan Chen , 2008
Within the phase fluctuation picture for the pseudogap state of a high-$T_{c}$ superconductor, we incorporate the phase fluctuations generated by the classical XY model with the Bogoliubov-de Gennes formalism utilizing a field-theoretical method. Thi s picture delineates the inhomogeneous characteristics of local order parameters observed in high-$T_{c}$ superconductors above $T_{c}$. We also compute the local density of states near a non-magnetic impurity with a strong scattering potential. The resonance peak smoothly evolves as temperature increases through $T_{c}$ without showing any sudden broadening, which is consistent with recent experimental findings.
We survey the landscape of binary hydrides across the entire periodic table from 10 to 500 GPa using a crystal structure prediction method. Building a critical temperature ($T_c$) model, with inputs arising from density of states calculations and Gas pari-Gyorffy theory, allows us to predict which energetically competitive candidates are most promising for high-$T_c$ superconductivity. Implementing optimisations, which lead to an order of magnitude speed-up for electron-phonon calculations, then allows us to perform an unprecedented number of high-throughput calculations of $T_c$ based on these predictions and to refine the model in an iterative manner. Converged electron-phonon calculations are performed for 121 of the best candidates from the final model. From these, we identify 36 above-100 K dynamically stable superconductors. To the best of our knowledge, superconductivity has not been previously studied in 27 of these. Of the 36, 18 exhibit superconductivity above 200 K, including structures of NaH$_6$ (248-279 K) and CaH$_6$ (216-253 K) at the relatively low pressure of 100 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا