ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory in nonmonotonic stress relaxation of a granular system

148   0   0.0 ( 0 )
 نشر من قبل Kieran Murphy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally that a granular packing of glass spheres is capable of storing memory of multiple strain states in the dynamic process of stress relaxation. Modeling the system as a non-interacting population of relaxing elements, we find that the functional form of the predicted relaxation requires a quantitative correction which grows in severity with each additional memory and is suggestive of interactions between elements. Our findings have implications for the broad class of soft matter systems that display memory and anomalous relaxation.



قيم البحث

اقرأ أيضاً

We propose a theoretical framework to calculate capillary stresses in complex mesoporous materials, such as moist sand, nanoporous hydrates, and drying colloidal films. Molecular simulations are mapped onto a phase-field model of the liquid-vapor mix ture, whose inhomogeneous stress tensor is integrated over Voronoi polyhedra in order to calculate equal and opposite forces between each pair of neighboring grains. The method is illustrated by simulations of moisture-induced forces in small clusters and random packings of spherical grains using lattice-gas Density Functional Theory. For a nano-granular model of cement hydrates, this approach reproduces the hysteretic water sorption/desorption isotherms and predicts drying shrinkage strain isotherm in good agreement with experiments. We show that capillary stress is an effective mechanism for internal stress relaxation in colloidal random packings, which contributes to the extraordinary durability of cement paste.
204 - Ji Xuan Hou 2010
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime for chains with $Z=40$ entanglements and into the terminal relaxation regime for $Z=10$. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter -free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.
We investigate the stress relaxation behavior on the application of step strains to aging aqueous suspensions of the synthetic clay Laponite. The stress exhibits a two-step decay, from which the slow relaxation modes are extracted as functions of the sample ages and applied step strain deformations. Interestingly, the slow time scales that we estimate show a dramatic enhancement with increasing strain amplitudes. We argue that the system ends up exploring the deeper sections of its energy landscape following the application of the step strain.
The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how th e final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces $P(f)$ exhibit exponential-like decay at large forces in agreement with previous studies.
Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from the dilute gas to the dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we setup a simulation that reproduces quantitatively the experimental observations and allows us to investigate the properties of the host granular medium, a task not feasible in the experiment. We discover a persistent collective rotational mode which emerges at high density and low granular temperature: a macroscopic fraction of the medium slowly rotates, randomly switching direction after very long times. Such a rotational mode of the host medium is the origin of probes superdiffusion. Collective motion is accompanied by a kind of dynamical heterogeneity at intermediate times (in the cage stage) followed by a strong reduction of fluctuations at late times, when superdiffusion sets in.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا