ﻻ يوجد ملخص باللغة العربية
We examine the impact of black hole jet feedback on the properties of the low-redshift intergalactic medium (IGM) in the SIMBA simulation, with a focus on the Ly$alpha$ forest mean flux decrement $D_A$. Without jet feedback, we confirm the Photon Underproduction Crisis (PUC) in which $Gamma_{rm HI}$ at $z=0$ must be increased by $times6$ over the Haardt & Madau value in order to match the observed $D_{A}$. Turning on jet feedback lowers this discrepancy to $simtimes 2.5$, and additionally using the recent Faucher-Gigu`ere background mostly resolves the PUC, along with producing a flux probability distribution function in accord with observations. The PUC becomes apparent at late epochs ($z lesssim 1$) where the jet and no-jet simulations diverge; at higher redshifts SIMBA reproduces the observed $D_{A}$ with no adjustment, with or without jets. The main impact of jet feedback is to lower the cosmic baryon fraction in the diffuse IGM from 39% to 16% at $z=0$, while increasing the warm-hot intergalactic medium (WHIM) baryon fraction from 30% to 70%; the lowering of the diffuse IGM content directly translates into a lowering of $D_{A}$ by a similar factor. Comparing to the older MUFASA simulation that employs different quenching feedback but is otherwise similar to SIMBA, MUFASA matches $D_{A}$ less well than SIMBA, suggesting that low-redshift measurements of $D_{A}$ and $Gamma_{rm HI}$ could provide constraints on feedback mechanisms. Our results suggest that widespread IGM heating at late times is a plausible solution to the PUC, and that SIMBAs jet AGN feedback model, included to quench massive galaxies, approximately yields this required heating.
We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Co
We examine the properties of the low-redshift circumgalactic medium (CGM) around star-forming and quenched galaxies in the Simba cosmological hydrodynamic simulations, focusing on comparing HI and metal line absorption to observations from the COS-Ha
We present results of hydrodynamic simulations of massive star forming regions with and without protostellar jets. We show that jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formatio
We use the Simba cosmological hydrodynamic simulation suite to explore the impact of feedback on the circumgalactic medium (CGM) and intergalactic medium (IGM) around $2 leq z leq 3$ quasars. We identify quasars in Simba as the most rapidly-accreting
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ~5 kpc (~5 arcmin) scales of the Northern