ﻻ يوجد ملخص باللغة العربية
Based on the motivation that some quantum gravity theories predicts the Lorentz Invariance Violation (LIV) around Planck-scale energy levels, this paper proposes a new formalism that addresses the possible effects of LIV in the electrodynamics. This formalism is capable of changing the usual electrodynamics through high derivative arbitrary mass dimension terms that includes a constant background field controlling the intensity of LIV in the models, producing modifications in the dispersion relations in a manner that is similar to the Myers-Pospelov approach. With this framework, it was possible to generate a CPT-even and CPT-odd generalized modifications of the electrodynamics in order to study the stability and causality of these theories considering the isotropic case for the background field. An additional analysis of unitarity at tree level was considered by studying the saturated propagators. After this analysis, we conclude that, while CPT-even modifications always preserves the stability, causality and unitarity in the boundaries of the effective field theory and therefore may be good candidates for field theories with interactions, the CPT-odd one violates causality and unitarity. This feature is a consequence of the vacuum birefringence characteristics that are present in CPT-odd theories for the photon sector.
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in a model which exhibits Lorentz symmetry breaking. We investigate such interactions in the CPT-even photon sector of the Standard Model Exte
We investigate an alternative CPT-odd Lorentz-breaking QED which includes the Carroll-Field-Jackiw (CFJ) term of the Standard Model Extension (SME), writing the gauge sector in the action in a Palatini-like form, in which the vectorial field and the
The effects of a Lorentz symmetry violating background vector on the Aharonov-Casher scattering in the nonrelativistic limit is considered. By using the self-adjoint extension method we found that there is an additional scattering for any value of th
The Aharonov-Casher problem in the presence of a Lorentz-violating background nonminimally coupled to a spinor and a gauge field is examined. Using an approach based on the self-adjoint extension method, an expression for the bound state energies is
We study CPT- and Lorentz-odd electrodynamics described by the Standard Model Extension. Its radiation is confined to the geometry of hollow conductor waveguide, open along $z$. In a special class of reference frames, with vanishing both 0-th and $z$