ﻻ يوجد ملخص باللغة العربية
In this paper we describe RooFitUnfold, an extension of the RooFit statistical software package to treat unfolding problems, and which includes most of the unfolding methods that commonly used in particle physics. The package provides a common interface to these algorithms as well as common uniform methods to evaluate their performance in terms of bias, variance and coverage. In this paper we exploit this common interface of RooFitUnfold to compare the performance of unfolding with the Richardson-Lucy, Iterative Dynamically Stabilized, Tikhonov, Gaussian Process, Bin-by-bin and inversion methods on several example problems.
A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two proce
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event b
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the
A method to perform unfolding with Gaussian processes (GPs) is presented. Using Bayesian regression, we define an estimator for the underlying truth distribution as the mode of the posterior. We show that in the case where the bin contents are distri
PyUnfold is a Python package for incorporating imperfections of the measurement process into a data analysis pipeline. In an ideal world, we would have access to the perfect detector: an apparatus that makes no error in measuring a desired quantity.