ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of TASEP with three merging characteristics

91   0   0.0 ( 0 )
 نشر من قبل Patrik L. Ferrari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the totally asymmetric simple exclusion process, with non-random initial condition having three regions of constant densities of particles. From left to right, the densities of the three regions are increasing. Consequently, there are three characteristics which meet, i.e. two shocks merge. We study the particle fluctuations at this merging point and show that they are given by a product of three (properly scaled) GOE Tracy-Widom distribution functions. We work directly in TASEP without relying on the connection to last passage percolation.



قيم البحث

اقرأ أيضاً

We consider two intimately related statistical mechanical problems on $mathbb{Z}^3$: (i) the tricritical behaviour of a model of classical unbounded $n$-component continuous spins with a triple-well single-spin potential (the $|varphi|^6$ model), and (ii) a random walk model of linear polymers with a three-body repulsion and two-body attraction at the tricritical theta point (critical point for the collapse transition) where repulsion and attraction effectively cancel. The polymer model is exactly equivalent to a supersymmetric spin model which corresponds to the $n=0$ version of the $|varphi|^6$ model. For the spin and polymer models, we identify the tricritical point, and prove that the tricritical two-point function has Gaussian long-distance decay, namely $|x|^{-1}$. The proof is based on an extension of a rigorous renormalisation group method that has been applied previously to analyse the $|varphi|^4$ and weakly self-avoiding walk models on $mathbb{Z}^4$.
We use techniques in the shuffle algebra to present a formula for the partition function of a one-dimensional log-gas comprised of particles of (possibly) different integer charges at certain inverse temperature $beta$ in terms of the Berezin integra l of an associated non-homogeneous alternating tensor. This generalizes previously known results by removing the restriction on the number of species of odd charge. Our methods provide a unified framework extending the de Bruijn integral identities from classical $beta$-ensembles ($beta$ = 1, 2, 4) to multicomponent ensembles, as well as to iterated integrals of more general determinantal integrands.
We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a stron g summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.
225 - Soon Hoe Lim , Jan Wehr 2017
We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the system converges to a homogenized process, described by an equation containing additional drift terms induced by the noise. The convergence results are obtained using the main result in cite{hottovy2015smoluchowski}, whose version is proven here under a weaker spectral assumption on the damping matrix. We apply our results to study thermophoresis of a Brownian particle in a non-equilibrium heat bath.
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the $q$-state Potts model for $q$ large enough.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا