ﻻ يوجد ملخص باللغة العربية
In this paper we consider the totally asymmetric simple exclusion process, with non-random initial condition having three regions of constant densities of particles. From left to right, the densities of the three regions are increasing. Consequently, there are three characteristics which meet, i.e. two shocks merge. We study the particle fluctuations at this merging point and show that they are given by a product of three (properly scaled) GOE Tracy-Widom distribution functions. We work directly in TASEP without relying on the connection to last passage percolation.
We consider two intimately related statistical mechanical problems on $mathbb{Z}^3$: (i) the tricritical behaviour of a model of classical unbounded $n$-component continuous spins with a triple-well single-spin potential (the $|varphi|^6$ model), and
We use techniques in the shuffle algebra to present a formula for the partition function of a one-dimensional log-gas comprised of particles of (possibly) different integer charges at certain inverse temperature $beta$ in terms of the Berezin integra
We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a stron
We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models