ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed-Form Whittles Index-Enabled Random Access for Timely Status Update

101   0   0.0 ( 0 )
 نشر من قبل Jingzhou Sun
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a star-topology wireless network for status update where a central node collects status data from a large number of distributed machine-type terminals that share a wireless medium. The Age of Information (AoI) minimization scheduling problem is formulated by the restless multi-armed bandit. A widely-proven near-optimal solution, i.e., the Whittles index, is derived in closed-form and the corresponding indexability is established. The index is then generalized to incorporate stochastic, periodic packet arrivals and unreliable channels. Inspired by the index scheduling policies which achieve near-optimal AoI but require heavy signaling overhead, a contention-based random access scheme, namely Index-Prioritized Random Access (IPRA), is further proposed. Based on IPRA, terminals that are not urgent to update, indicated by their indices, are barred access to the wireless medium, thus improving the access timeliness. A computer-based simulation shows that IPRAs performance is close to the optimal AoI in this setting and outperforms standard random access schemes. Also, for applications with hard AoI deadlines, we provide reliable deadline guarantee analysis. Closed-form achievable AoI stationary distributions under Bernoulli packet arrivals are derived such that AoI deadline with high reliability can be ensured by calculating the maximum number of supportable terminals and allocating system resources proportionally.



قيم البحث

اقرأ أيضاً

This paper investigates information freshness of multichannel access in information update systems. Age of information (AoI) is a fundamentally important metric to characterize information freshness, defined as the time elapsed since the generation o f the last successfully received update. When multiple devices share the same wireless channel to send updates to a common receiver, an interesting question is whether dividing the whole channel into several subchannels will lead to better AoI performance. Given the same frequency band, dividing it into different numbers of subchannels lead to different transmission times and packet error rates (PER) of short update packets, thus affecting information freshness. We focus on a multichannel access system where different devices take turns to transmit with a cyclic schedule repeated over time. We first derive the average AoI by estimating the PERs of short packets. Then we examine bounded AoI, for which the instantaneous AoI is required to be below a threshold a large percentage of the time. Simulation results indicate that multichannel access can provide low average AoI and uniform bounded AoI simultaneously across different received powers. Overall, our investigations provide insights into practical designs of multichannel access systems with AoI requirements.
65 - Chao Xu , Yiping Xie , Xijun Wang 2021
In the Internet of Things (IoT) networks, caching is a promising technique to alleviate energy consumption of sensors by responding to users data requests with the data packets cached in the edge caching node (ECN). However, without an efficient stat us update strategy, the information obtained by users may be stale, which in return would inevitably deteriorate the accuracy and reliability of derived decisions for real-time applications. In this paper, we focus on striking the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status. Particularly, we first depict the evolutions of the AoI with each sensor from different users perspective with time steps of non-uniform duration, which are determined by both the users data requests and the ECNs status update decision. Then, we formulate a non-uniform time step based dynamic status update optimization problem to minimize the long-term average cost, jointly considering the average AoI and energy consumption. To this end, a Markov Decision Process is formulated and further, a dueling deep R-network based dynamic status update algorithm is devised by combining dueling deep Q-network and tabular R-learning, with which challenges from the curse of dimensionality and unknown of the environmental dynamics can be addressed. Finally, extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with five baseline deep reinforcement learning algorithms and policies.
196 - Lu Lu , Lizhao You , 2013
This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access mode as Network-Coded Multiple Access (NCMA). Prior studies on PNC mostly focused on relay networks. NCMA is the first realized multiple access scheme that establishes the usefulness of PNC in a non-relay setting. NCMA allows multiple nodes to transmit simultaneously to the access point (AP) to boost throughput. In the non-relay setting, when two nodes A and B transmit to the AP simultaneously, the AP aims to obtain both packet A and packet B rather than their network-coded packet. An interesting question is whether network coding, specifically PNC which extracts packet (A XOR B), can still be useful in such a setting. We provide an affirmative answer to this question with a novel two-layer decoding approach amenable to real-time implementation. Our USRP prototype indicates that NCMA can boost throughput by 100% in the medium-high SNR regime (>=10dB). We believe further throughput enhancement is possible by allowing more than two users to transmit together.
The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense n etworks, however, require pervasive, high-capacity backhaul solutions, and deploying fiber optic to all base stations is generally considered to be too expensive for network operators. The 3rd Generation Partnership Project (3GPP) has thus introduced Integrated Access and Backhaul (IAB), a wireless backhaul solution in which the access and backhaul links share the same hardware, protocol stack, and also spectrum. The multiplexing of different links in the same frequency bands, however, introduces interference and capacity sharing issues, thus calling for the introduction of advanced scheduling and coordination schemes. This paper proposes a semi-centralized resource allocation scheme for IAB networks, designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications. We develop a version of the Maximum Weighted Matching (MWM) problem that can be applied on a spanning tree that represents the IAB network and whose complexity is linear in the number of IAB-nodes. The proposed solution is compared with state-of-the-art distributed approaches through end-to-end, full-stack system-level simulations with a 3GPP-compliant channel model, protocol stack, and a diverse set of user applications. The results show how that our scheme can increase the throughput of cell-edge users up to 5 times, while decreasing the overall network congestion with an end-to-end delay reduction of up to 25 times.
More and more emerging Internet of Things (IoT) applications involve status updates, where various IoT devices monitor certain physical processes and report their latest statuses to the relevant information fusion nodes. A new performance measure, te rmed the age of information (AoI), has recently been proposed to quantify the information freshness in time-critical IoT applications. Due to a large number of devices in future IoT networks, the decentralized channel access protocols (e.g. random access) are preferable thanks to their low network overhead. Built on the AoI concept, some recent efforts have developed several AoI-oriented ALOHA-like random access protocols for boosting the network-wide information freshness. However, all relevant works focused on theoretical designs and analysis. The development and implementation of a working prototype to evaluate and further improve these random access protocols in practice have been largely overlooked. Motivated as such, we build a software-defined radio (SDR) prototype for testing and comparing the performance of recently proposed AoI-oriented random access protocols. To this end, we implement a time-slotted wireless system by devising a simple yet effective over-the-air time synchronization scheme, in which beacons that serve as reference timing packets are broadcast by an access point from time to time. For a complete working prototype, we also design the frame structures of various packets exchanged within the system. Finally, we design a set of experiments, implement them on our prototype and test the considered algorithms in an office environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا