ﻻ يوجد ملخص باللغة العربية
The Kepler mission revealed a class of planets known as super-puffs, with masses only a few times larger than Earths but radii larger than Neptune, giving them very low mean densities. All three of the known planets orbiting the young solar-type star Kepler 51 are super-puffs. The Kepler 51 system thereby provides an opportunity for a comparative study of the structures and atmospheres of this mysterious class of planets, which may provide clues about their formation and evolution. We observed two transits each of Kepler 51b and 51d with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. Combining new WFC3 transit times with re-analyzed Kepler data and updated stellar parameters, we confirmed that all three planets have densities lower than 0.1 g/cm$^{3}$. We measured the WFC3 transmission spectra to be featureless between 1.15 and 1.63 $mu$m, ruling out any variations greater than 0.6 scale heights (assuming a H/He dominated atmosphere), thus showing no significant water absorption features. We interpreted the flat spectra as the result of a high-altitude aerosol layer (pressure $<$3 mbar) on each planet. Adding this new result to the collection of flat spectra that have been observed for other sub-Neptune planets, we find support for one of the two hypotheses introduced by Crossfield and Kreidberg (2017), that planets with cooler equilibrium temperatures have more high-altitude aerosols. We strongly disfavor their other hypothesis that the H/He mass fraction drives the appearance of large amplitude transmission features.
Spatial heterogeneity and temporal variability are general features in planetary weather and climate, due to the effects of planetary rotation, uneven stellar flux distribution, fluid motion instability, etc. In this study, we investigate the asymmet
GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations h
Spectral slopes in optical transmission spectra of exoplanetary atmospheres encapsulate information on the properties of exotic clouds. The slope is usually attributed to the Rayleigh scattering caused by tiny aerosol particles, whereas recent retrie
The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($sim 500$ km) and equilibrium temperature ($sim 2100$ K). Here we report
Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the sp