ﻻ يوجد ملخص باللغة العربية
We look for oscillating signals in the primordial bispectrum from new physics heavy particles which are visibly large for next generation large scale structures (LSS) survey. We show that in ordinary inflation scenarios where a slow-rolling inflaton generates density fluctuations and with no breaking of scale invariance or spacetime symmetry, there exist no naturally large signals unless the rolling inflaton generates a parity-odd chemical potential for the heavy particles. We estimate the accessibility of this signal through observations. While current CMB data are already sensitive in the most optimistic scenario, future probes, including LSS survey and 21 cm observation, can cover interesting regions of the model space.
We study the production of massive gauge bosons during inflation from the axion-type coupling to the inflaton and the corresponding oscillatory features in the primordial non-Gaussianity. In a window in which both the gauge boson mass and the chemica
The detection of an oscillating pattern in the bispectrum of density perturbations could suggest the existence of a high-energy second minimum in the Higgs potential. If the Higgs field resided in this new minimum during inflation and was brought bac
Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos prese
We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the cor
The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario pr