ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models

138   0   0.0 ( 0 )
 نشر من قبل Belhal Karimi
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to generate samples of the random effects from their conditional distributions is fundamental for inference in mixed effects models. Random walk Metropolis is widely used to conduct such sampling, but such a method can converge slowly for medium dimension problems, or when the joint structure of the distributions to sample is complex. We propose a Metropolis Hastings (MH) algorithm based on a multidimensional Gaussian proposal that takes into account the joint conditional distribution of the random effects and does not require any tuning, in contrast with more sophisticated samplers such as the Metropolis Adjusted Langevin Algorithm or the No-U-Turn Sampler that involve costly tuning runs or intensive computation. Indeed, this distribution is automatically obtained thanks to a Laplace approximation of the original model. We show that such approximation is equivalent to linearizing the model in the case of continuous data. Numerical experiments based on real data highlight the very good performances of the proposed method for continuous data model.



قيم البحث

اقرأ أيضاً

MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper an approach to reduce the computational costs of such algorithms by a si mple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that outranks the corresponding reduction in acceptance probability. The division decomposes the prior x likelihood term into a product such that some of its components are much cheaper to compute than others. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further, This approach can in turn be accelerated as part of a prefetching algorithm taking advantage of the parallel abilities of the computer at hand. We illustrate those accelerating features on a series of toy and realistic examples.
We present a detailed circuit implementation of Szegedys quantization of the Metropolis-Hastings walk. This quantum walk is usually defined with respect to an oracle. We find that a direct implementation of this oracle requires costly arithmetic oper ations and thus reformulate the quantum walk in a way that circumvents the implementation of that specific oracle and which closely follows the classical Metropolis-Hastings walk. We also present heuristic quantum algorithms that use the quantum walk in the context of discrete optimization problems and numerically study their performances. Our numerical results indicate polynomial quantum speedups in heuristic settings.
We consider the problem of sampling from a strongly log-concave density in $mathbb{R}^d$, and prove a non-asymptotic upper bound on the mixing time of the Metropolis-adjusted Langevin algorithm (MALA). The method draws samples by simulating a Markov chain obtained from the discretization of an appropriate Langevin diffusion, combined with an accept-reject step. Relative to known guarantees for the unadjusted Langevin algorithm (ULA), our bounds show that the use of an accept-reject step in MALA leads to an exponentially improved dependence on the error-tolerance. Concretely, in order to obtain samples with TV error at most $delta$ for a density with condition number $kappa$, we show that MALA requires $mathcal{O} big(kappa d log(1/delta) big)$ steps, as compared to the $mathcal{O} big(kappa^2 d/delta^2 big)$ steps established in past work on ULA. We also demonstrate the gains of MALA over ULA for weakly log-concave densities. Furthermore, we derive mixing time bounds for the Metropolized random walk (MRW) and obtain $mathcal{O}(kappa)$ mixing time slower than MALA. We provide numerical examples that support our theoretical findings, and demonstrate the benefits of Metropolis-Hastings adjustment for Langevin-type sampling algorithms.
Studying the neurological, genetic and evolutionary basis of human vocal communication mechanisms is an important field of neuroscience. In the absence of high quality data on humans, mouse vocalization experiments in laboratory settings have been pr oven to be useful in providing valuable insights into mammalian vocal development and evolution, including especially the impact of certain genetic mutations. Data sets from mouse vocalization experiments usually consist of categorical syllable sequences along with continuous inter-syllable interval times for mice of different genotypes vocalizing under various contexts. Few statistical models have considered the inference for both transition probabilities and inter-state intervals. The latter is of particular importance as increased inter-state intervals can be an indication of possible vocal impairment. In this paper, we propose a class of novel Markov renewal mixed models that capture the stochastic dynamics of both state transitions and inter-state interval times. Specifically, we model the transition dynamics and the inter-state intervals using Dirichlet and gamma mixtures, respectively, allowing the mixture probabilities in both cases to vary flexibly with fixed covariate effects as well as random individual-specific effects. We apply our model to analyze the impact of a mutation in the Foxp2 gene on mouse vocal behavior. We find that genotypes and social contexts significantly affect the inter-state interval times but, compared to previous analyses, the influences of genotype and social context on the syllable transition dynamics are weaker.
We propose a new kernel for Metropolis Hastings called Directional Metropolis Hastings (DMH) with multivariate update where the proposal kernel has state dependent covariance matrix. We use the derivative of the target distribution at the current sta te to change the orientation of the proposal distribution, therefore producing a more plausible proposal. We study the conditions for geometric ergodicity of our algorithm and provide necessary and sufficient conditions for convergence. We also suggest a scheme for adaptively update the variance parameter and study the conditions of ergodicity of the adaptive algorithm. We demonstrate the performance of our algorithm in a Bayesian generalized linear model problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا