ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3D Kinematics of Gas in the Small Magellanic Cloud

324   0   0.0 ( 0 )
 نشر من قبل Claire Murray
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities match with dominant HI components. We compare the observed radial and tangential velocities of these stars with predictions from the state-of-the-art rotating disk model based on high-resolution 21 cm observations of the SMC from the Australian Square Kilometer Array Pathfinder telescope. We find that the observed kinematics of gas-tracing stars are inconsistent with disk rotation. We conclude that the kinematics of gas in the SMC are more complex than can be inferred from the integrated radial velocity field. As a result of violent tidal interactions with the LMC, non-rotational motions are prevalent throughout the SMC, and it is likely composed of distinct sub-structures overlapping along the line of sight.



قيم البحث

اقرأ أيضاً

We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths < 1 km/s). Most CO emission appears to be offset from the peaks of the HI emission, some molecular gas lies in regions without a clear HI counterpart. We estimate a total molecular gas mass of 10^3-10^4 Msun in each cloud and molecular gas fractions up to 30% of the total cold gas mass (molecular + neutral). Under the assumption that this gas is escaping the galaxy, we calculated a cold gas outflow rate of 0.3-1.8 Msun/yr and mass loading factors of 3 -12 at a distance larger than 1 kpc. These results show that relatively weak star-formation-driven winds in dwarf galaxies like the SMC are able to accelerate significant amounts of cold and dense matter and inject it into the surrounding environment.
We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5 +/- 5.0 km/s. This unambiguously demonstrates that these two regions are kinematically distinct: the Wing is moving away from the Bar, and towards the Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is consistent with models for a recent, direct collision between the Clouds. We present transverse velocity distributions for our field OB stars, confirming that unbound runaways comprise on the order of half our sample, possibly more. Using eclipsing binaries and double-lined spectroscopic binaries as tracers of dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers of runaways accelerated by supernova kicks, we find significant contributions from both populations. The data suggest that HMXBs have lower velocity dispersion relative to dynamically ejected binaries, consistent with the former corresponding to less energetic supernova kicks that failed to unbind the components. Evidence suggests that our fast runaways are dominated by dynamical, rather than supernova, ejections.
In order to understand the evolution of the interstellar medium (ISM) of a galaxy, we have analysed the gas and dust budget of the Small Magellanic Cloud (SMC). Using the Spitzer Space Telescope, we measured the integrated gas mass-loss rate across a symptotic giant branch (AGB) stars and red supergiants (RSGs) in the SMC, and obtained a rate of 1.4x10^-3 Msun yr-1. This is much smaller than the estimated gas ejection rate from type II supernovae (SNe) (2-4x10^-2 Msun yr-1). The SMC underwent a an increase in starformation rate in the last 12 Myrs, and consequently the galaxy has a relatively high SN rate at present. Thus, SNe are more important gas sources than AGB stars in the SMC. The total gas input from stellar sources into the ISM is 2-4x10^-2 Msun yr-1. This is slightly smaller than the ISM gas consumed by starformation (~8x10^-2 Msun yr-1). Starformation in the SMC relies on a gas reservoir in the ISM, but eventually the starformation rate will decline in this galaxy, unless gas infalls into the ISM from an external source. The dust injection rate from AGB and RSG candidates is 1x10^-5 Msun yr-1. Dust injection from SNe is in the range of 0.2--11x10^-4 Msun yr-1, although the SN contribution is rather uncertain. Stellar sources could be important for ISM dust (3x10^5 Msun yr-1) in the SMC, if the dust lifetime is about 1.4 Gyrs. We found that the presence of poly-aromatic hydrocarbons (PAHs) in the ISM cannot be explained entirely by carbon-rich AGB stars. Carbon-rich AGB stars could inject only 7x10^-9 Msun yr-1 of PAHs at most, which could contribute up to 100 Msun of PAHs in the lifetime of a PAH. The estimated PAH mass of 1800 Msun in the SMC can not be explained. Additional PAH sources, or ISM reprocessing should be needed.
We present radial velocities for 2045 stars in the Small Magellanic Cloud (SMC), obtained from the 2dF survey by Evans et al. (2004). The great majority of these stars are of OBA type, tracing the dynamics of the young stellar population. Dividing th e sample into ad hoc `bar and `wing samples (north and south, respectively, of the line: $delta$ = -77$^{circ}$50 + [4$alpha$], where $alpha$ is in minutes of time) we find that the velocities in the SMC bar show a gradient of 26.3 +/- 1.6 km/s/deg. at a position angle of 126 +/- 4 deg. The derived gradient in the bar is robust to the adopted line of demarcation between the two samples. The largest redshifts are found in the SMC wing, in which the velocity distribution appears distinct from that in the bar, most likely a consequence of the interaction between the Magellanic Clouds that is predicted to have occurred 0.2 Gyr ago. The mean velocity for all stars in the sample is +172.0 +/- 0.2 km/s (redshifted by ~20 km/s when compared to published results for older populations), with a velocity dispersion of 30 km/s.
We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight velocity field is d ominated by the projection of the orbital motion of the SMC around the LMC/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disk system. The current sample and previous stellar and HI kinematics can be reconciled by rotating disk models with line of nodes position angle, theta, ~ 120-130 deg., moderate inclination (i ~ 25-70 deg.), and rotation curves rising at 20-40 km/s/kpc. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disk line-of-nodes lying in a NE-SW direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا