ترغب بنشر مسار تعليمي؟ اضغط هنا

A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

74   0   0.0 ( 0 )
 نشر من قبل Foivos Alimisis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel second-order ODE as the continuous-time limit of a Riemannian accelerated gradient-based method on a manifold with curvature bounded from below. This ODE can be seen as a generalization of the ODE derived for Euclidean spaces, and can also serve as an analysis tool. We study the convergence behavior of this ODE for different classes of functions, such as geodesically convex, strongly-convex and weakly-quasi-convex. We demonstrate how such an ODE can be discretized using a semi-implicit and Nesterov-inspired numerical integrator, that empirically yields stable algorithms which are faithful to the continuous-time analysis and exhibit accelerated convergence.



قيم البحث

اقرأ أيضاً

171 - Tingran Gao , Lek-Heng Lim , Ke Ye 2018
We introduce in this paper a manifold optimization framework that utilizes semi-Riemannian structures on the underlying smooth manifolds. Unlike in Riemannian geometry, where each tangent space is equipped with a positive definite inner product, a se mi-Riemannian manifold allows the metric tensor to be indefinite on each tangent space, i.e., possessing both positive and negative definite subspaces; differential geometric objects such as geodesics and parallel-transport can be defined on non-degenerate semi-Riemannian manifolds as well, and can be carefully leveraged to adapt Riemannian optimization algorithms to the semi-Riemannian setting. In particular, we discuss the metric independence of manifold optimization algorithms, and illustrate that the weaker but more general semi-Riemannian geometry often suffices for the purpose of optimizing smooth functions on smooth manifolds in practice.
We consider optimization problems on Riemannian manifolds with equality and inequality constraints, which we call Riemannian nonlinear optimization (RNLO) problems. Although they have numerous applications, the existing studies on them are limited es pecially in terms of algorithms. In this paper, we propose Riemannian sequential quadratic optimization (RSQO) that uses a line-search technique with an ell_1 penalty function as an extension of the standard SQO algorithm for constrained nonlinear optimization problems in Euclidean spaces to Riemannian manifolds. We prove its global convergence to a Karush-Kuhn-Tucker point of the RNLO problem by means of parallel transport and the exponential mapping. Furthermore, we establish its local quadratic convergence by analyzing the relationship between sequences generated by RSQO and the Riemannian Newton method. Ours is the first algorithm that has both global and local convergence properties for constrained nonlinear optimization on Riemannian manifolds. Empirical results show that RSQO finds solutions more stably and with higher accuracy compared with the existing Riemannian penalty and augmented Lagrangian methods.
We present a dynamical system framework for understanding Nesterovs accelerated gradient method. In contrast to earlier work, our derivation does not rely on a vanishing step size argument. We show that Nesterov acceleration arises from discretizing an ordinary differential equation with a semi-implicit Euler integration scheme. We analyze both the underlying differential equation as well as the discretization to obtain insights into the phenomenon of acceleration. The analysis suggests that a curvature-dependent damping term lies at the heart of the phenomenon. We further establish connections between the discretized and the continuous-time dynamics.
We further research on the acceleration phenomenon on Riemannian manifolds by introducing the first global first-order method that achieves the same rates as accelerated gradient descent in the Euclidean space for the optimization of smooth and geode sically convex (g-convex) or strongly g-convex functions defined on the hyperbolic space or a subset of the sphere, up to constants and log factors. To the best of our knowledge, this is the first method that is proved to achieve these rates globally on functions defined on a Riemannian manifold $mathcal{M}$ other than the Euclidean space. As a proxy, we solve a constrained non-convex Euclidean problem, under a condition between convexity and quasar-convexity, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa.
In this paper, we introduce various mechanisms to obtain accelerated first-order stochastic optimization algorithms when the objective function is convex or strongly convex. Specifically, we extend the Catalyst approach originally designed for determ inistic objectives to the stochastic setting. Given an optimization method with mild convergence guarantees for strongly convex problems, the challenge is to accelerate convergence to a noise-dominated region, and then achieve convergence with an optimal worst-case complexity depending on the noise variance of the gradients. A side contribution of our work is also a generic analysis that can handle inexact proximal operators, providing new insights about the robustness of stochastic algorithms when the proximal operator cannot be exactly computed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا