ﻻ يوجد ملخص باللغة العربية
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction in NeNa cycle plays an important role in the production of only stable sodium isotope $^{23}$Na. This nucleus is processed by the NeNa cycle during hot bottom burning (HBB) in asymptotic giant branch (AGB) stage of low metallicity intermediate mass stats (4 M$_O$ $leq$ M $leq$ 6 M$_O$). Recent measurements have addressed the uncertainty in the thermonuclear reaction rate of this reaction at relevant astrophysical energies through the identification of low lying resonances at E$_p$ = 71,105, 156.2, 189.5 and 259.7 keV. In addition, precise measurements of low energy behaviour of the non-resonant capture has also been performed and the contribution of the sub-threshold resonance at 8664 keV excitation in $^{23}$Na has been established. Here, in this article, we have presented a systematic R-matrix analysis of direct capture to the bound states and the decay of the sub-threshold resonance at 8664 keV to the ground state of $^{23}$Na. A finite range distorted wave Born approximation (FRDWBA) calculation has been performed for $^{22}$Ne($^3$He,d)$^{23}$Na transfer reaction data to extract the asymptotic normalization coeeficients (ANC-s) required to estimate the non-resonant capture cross sections or astrophysical S-factor values in R-matrix analysis. Simultaneous R-matrix analysis constrained with ANC-s from transfer calculation reproduced the astrophysical S-factor data over a wide energy window. The S$_{tot}^{DC}$(0) = 48.8$pm$9.5 keV.b compares well with the result of Ferraro, {it et al.} and has a lower uncertainty. The resultant thermonuclear reaction is slightly larger in 0.1 GK $le$ T $le$ 0.2 GK temperature range but otherwise in agreeent with Ferraro, {it et al.}.
The $^{22}$Ne($p,gamma$)$^{23}$Na reaction, part of the neon-sodium cycle of hydrogen burning, may explain the observed anticorrelation between sodium and oxygen abundances in globular cluster stars. Its rate is controlled by a number of low-energy r
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominates the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a
In this Letter we report on the first inverse kinematics measurement of key resonances in the ${}^{22}text{Ne}(p,gamma)^{23}text{Na}$ reaction which forms part of the NeNa cycle, and is relevant for ${}^{23}$Na synthesis in asymptotic giant branch (A
The abundances of sodium and oxygen are observed to be anti-correlated in all well-studied globular clusters. Asymptotic giant branch (AGB) stars undergoing hot bottom burning (HBB) are thought to be prime candidates for producing sodium-rich oxygen-