ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method to Construct Gloay Complementary Set by Paraunitary Matrices and Hadamard Matrices

66   0   0.0 ( 0 )
 نشر من قبل Zilong Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Golay complementary sequences have been put a high value on the applications in orthogonal frequency-division multiplexing (OFDM) systems since its good peak-to-mean envelope power ratio(PMEPR) properties. However, with the increase of the code length, the code rate of the standard Golay sequences suffer a dramatic decline. Even though a lot of efforts have been paid to solve the code rate problem for OFDM application, how to construct large classes of sequences with low PMEPR is still difficult and open now. In this paper, we propose a new method to construct $q$-ary Golay complementary set of size $N$ and length $N^n$ by $Ntimes N$ Hadamard Matrices where $n$ is arbitrary and $N$ is a power of 2. Every item of the constructed sequences can be presented as the product of the specific entries of the Hadamard Matrices. The previous works in cite{BudIT} can be regarded as a special case of the constructions in this paper and we also obtained new quaternary Golay sets never reported in the literature.



قيم البحث

اقرأ أيضاً

The concept of paraunitary (PU) matrices arose in the early 1990s in the study of multi-rate filter banks. So far, these matrices have found wide applications in cryptography, digital signal processing, and wireless communications. Existing PU matric es are subject to certain constraints on their existence and hence their availability is not guaranteed in practice. Motivated by this, for the first time, we introduce a novel concept, called $Z$-paraunitary (ZPU) matrix, whose orthogonality is defined over a matrix of polynomials with identical degree not necessarily taking the maximum value. We show that there exists an equivalence between a ZPU matrix and a $Z$-complementary code set when the latter is expressed as a matrix with polynomial entries. Furthermore, we investigate some important properties of ZPU matrices, which are useful for the extension of matrix sizes and sequence lengths. Finally, we propose a unifying construction framework for optimal ZPU matrices which includes existing PU matrices as a special case.
In this paper, we obtain a number of new infinite families of Hadamard matrices. Our constructions are based on four new constructions of difference families with four or eight blocks. By applying the Wallis-Whiteman array or the Kharaghani array to the difference families constructed, we obtain new Hadamard matrices of order $4(uv+1)$ for $u=2$ and $vin Phi_1cup Phi_2 cup Phi_3 cup Phi_4$; and for $uin {3,5}$ and $vin Phi_1cup Phi_2 cup Phi_3$. Here, $Phi_1={q^2:qequiv 1pmod{4}mbox{ is a prime power}}$, $Phi_2={n^4in mathbb{N}:nequiv 1pmod{2}} cup {9n^4in mathbb{N}:nequiv 1pmod{2}}$, $Phi_3={5}$ and $Phi_4={13,37}$. Moreover, our construction also yields new Hadamard matrices of order $8(uv+1)$ for any $uin Phi_1cup Phi_2$ and $vin Phi_1cup Phi_2 cup Phi_3$.
333 - Meng Cao 2020
Matrix-product codes over finite fields are an important class of long linear codes by combining several commensurate shorter linear codes with a defining matrix over finite fields. The construction of matrix-product codes with certain self-orthogona lity over finite fields is an effective way to obtain good $q$-ary quantum codes of large length. Specifically, it follows from CSS construction (resp. Hermitian construction) that a matrix-product code over $mathbb{F}_{q}$ (resp. $mathbb{F}_{q^{2}}$) which is Euclidean dual-containing (resp. Hermitian dual-containing) can produce a $q$-ary quantum code. In order to obtain such matrix-product codes, a common way is to construct quasi-orthogonal matrices (resp. quasi-unitary matrices) as the defining matrices of matrix-product codes over $mathbb{F}_{q}$ (resp. $mathbb{F}_{q^{2}}$). The usage of NSC quasi-orthogonal matrices or NSC quasi-unitary matrices in this process enables the minimum distance lower bound of the corresponding quantum codes to reach its optimum. This article has two purposes: the first is to summarize some results of this topic obtained by the author of this article and his cooperators in cite{Cao2020Constructioncaowang,Cao2020New,Cao2020Constructionof}; the second is to add some new results on quasi-orthogonal matrices (resp. quasi-unitary matrices), Euclidean dual-containing (resp. Hermitian dual-containing) matrix-product codes and $q$-ary quantum codes derived from these newly constructed matrix-product codes.
This paper considers the problem of recovering an unknown sparse ptimes p matrix X from an mtimes m matrix Y=AXB^T, where A and B are known m times p matrices with m << p. The main result shows that there exist constructions of the sketching matric es A and B so that even if X has O(p) non-zeros, it can be recovered exactly and efficiently using a convex program as long as these non-zeros are not concentrated in any single row/column of X. Furthermore, it suffices for the size of Y (the sketch dimension) to scale as m = O(sqrt{# nonzeros in X} times log p). The results also show that the recovery is robust and stable in the sense that if X is equal to a sparse matrix plus a perturbation, then the convex program we propose produces an approximation with accuracy proportional to the size of the perturbation. Unlike traditional results on sparse recovery, where the sensing matrix produces independent measurements, our sensing operator is highly constrained (it assumes a tensor product structure). Therefore, proving recovery guarantees require non-standard techniques. Indeed our approach relies on a novel result concerning tensor products of bipartite graphs, which may be of independent interest. This problem is motivated by the following application, among others. Consider a ptimes n data matrix D, consisting of n observations of p variables. Assume that the correlation matrix X:=DD^{T} is (approximately) sparse in the sense that each of the p variables is significantly correlated with only a few others. Our results show that these significant correlations can be detected even if we have access to only a sketch of the data S=AD with A in R^{mtimes p}.
In this paper, we find regular or biregular Hadamard matrices with maximum excess by negating some rows and columns of known Hadamard matrices obtained from quadratic residues of finite fields. In particular, we show that if either $4m^2+4m+3$ or $2m ^2+2m+1$ is a prime power, then there exists a biregular Hadamard matrix of order $n=4(m^2+m+1)$ with maximum excess. Furthermore, we give a sufficient condition for Hadamard matrices obtained from quadratic residues being transformed to be regular in terms of four-class translation association schemes on finite fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا