ﻻ يوجد ملخص باللغة العربية
Cross-domain recommendation can alleviate the data sparsity problem in recommender systems. To transfer the knowledge from one domain to another, one can either utilize the neighborhood information or learn a direct mapping function. However, all existing methods ignore the high-order connectivity information in cross-domain recommendation area and suffer from the domain-incompatibility problem. In this paper, we propose a textbf{J}oint textbf{S}pectral textbf{C}onvolutional textbf{N}etwork (JSCN) for cross-domain recommendation. JSCN will simultaneously operate multi-layer spectral convolutions on different graphs, and jointly learn a domain-invariant user representation with a domain adaptive user mapping module. As a result, the high-order comprehensive connectivity information can be extracted by the spectral convolutions and the information can be transferred across domains with the domain-invariant user mapping. The domain adaptive user mapping module can help the incompatible domains to transfer the knowledge across each other. Extensive experiments on $24$ Amazon rating datasets show the effectiveness of JSCN in the cross-domain recommendation, with $9.2%$ improvement on recall and $36.4%$ improvement on MAP compared with state-of-the-art methods. Our code is available online ~footnote{https://github.com/JimLiu96/JSCN}.
Knowledge distillation (KD) is a well-known method to reduce inference latency by compressing a cumbersome teacher model to a small student model. Despite the success of KD in the classification task, applying KD to recommender models is challenging
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. Th
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with increasing depth of the network, which is a major constraint for efficient network training on modern GPUs with limited memory, embedded systems, and m
Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data,
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with aug