ترغب بنشر مسار تعليمي؟ اضغط هنا

JSCN: Joint Spectral Convolutional Network for Cross Domain Recommendation

121   0   0.0 ( 0 )
 نشر من قبل Zhiwei Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-domain recommendation can alleviate the data sparsity problem in recommender systems. To transfer the knowledge from one domain to another, one can either utilize the neighborhood information or learn a direct mapping function. However, all existing methods ignore the high-order connectivity information in cross-domain recommendation area and suffer from the domain-incompatibility problem. In this paper, we propose a textbf{J}oint textbf{S}pectral textbf{C}onvolutional textbf{N}etwork (JSCN) for cross-domain recommendation. JSCN will simultaneously operate multi-layer spectral convolutions on different graphs, and jointly learn a domain-invariant user representation with a domain adaptive user mapping module. As a result, the high-order comprehensive connectivity information can be extracted by the spectral convolutions and the information can be transferred across domains with the domain-invariant user mapping. The domain adaptive user mapping module can help the incompatible domains to transfer the knowledge across each other. Extensive experiments on $24$ Amazon rating datasets show the effectiveness of JSCN in the cross-domain recommendation, with $9.2%$ improvement on recall and $36.4%$ improvement on MAP compared with state-of-the-art methods. Our code is available online ~footnote{https://github.com/JimLiu96/JSCN}.



قيم البحث

اقرأ أيضاً

Knowledge distillation (KD) is a well-known method to reduce inference latency by compressing a cumbersome teacher model to a small student model. Despite the success of KD in the classification task, applying KD to recommender models is challenging due to the sparsity of positive feedback, the ambiguity of missing feedback, and the ranking problem associated with the top-N recommendation. To address the issues, we propose a new KD model for the collaborative filtering approach, namely collaborative distillation (CD). Specifically, (1) we reformulate a loss function to deal with the ambiguity of missing feedback. (2) We exploit probabilistic rank-aware sampling for the top-N recommendation. (3) To train the proposed model effectively, we develop two training strategies for the student model, called the teacher- and the student-guided training methods, selecting the most useful feedback from the teacher model. Via experimental results, we demonstrate that the proposed model outperforms the state-of-the-art method by 2.7-33.2% and 2.7-29.1% in hit rate (HR) and normalized discounted cumulative gain (NDCG), respectively. Moreover, the proposed model achieves the performance comparable to the teacher model.
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. Th e compatibility of user and items feature further influence the future interaction between users and items. Recently, point process based models have been proposed in the literature aiming to capture the temporally evolving nature of these latent features. However, these models often make strong parametric assumptions about the evolution process of the user and item latent features, which may not reflect the reality, and has limited power in expressing the complex and nonlinear dynamics underlying these processes. To address these limitations, we propose a novel deep coevolutionary network model (DeepCoevolve), for learning user and item features based on their interaction graph. DeepCoevolve use recurrent neural network (RNN) over evolving networks to define the intensity function in point processes, which allows the model to capture complex mutual influence between users and items, and the feature evolution over time. We also develop an efficient procedure for training the model parameters, and show that the learned models lead to significant improvements in recommendation and activity prediction compared to previous state-of-the-arts parametric models.
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with increasing depth of the network, which is a major constraint for efficient network training on modern GPUs with limited memory, embedded systems, and m obile devices. Several studies show that the feature maps (as generated after the convolutional layers) are the main bottleneck in this memory problem. Often, these feature maps mimic natural photographs in the sense that their energy is concentrated in the spectral domain. Although embedding CNN architectures in the spectral domain is widely exploited to accelerate the training process, we demonstrate that it is also possible to use the spectral domain to reduce the memory footprint, a method we call Spectral Domain Convolutional Neural Network (SpecNet) that performs both the convolution and the activation operations in the spectral domain. The performance of SpecNet is evaluated on three competitive object recognition benchmark tasks (CIFAR-10, SVHN, and ImageNet), and compared with several state-of-the-art implementations. Overall, SpecNet is able to reduce memory consumption by about 60% without significant loss of performance for all tested networks.
Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each categorical feature could take on as many as tens of millions of different possible categories, the embedding tables form the primary memory bottleneck during both training and inference. We propose a novel approach for reducing the embedding size in an end-to-end fashion by exploiting complementary partitions of the category set to produce a unique embedding vector for each category without explicit definition. By storing multiple smaller embedding tables based on each complementary partition and combining embeddings from each table, we define a unique embedding for each category at smaller memory cost. This approach may be interpreted as using a specific fixed codebook to ensure uniqueness of each categorys representation. Our experimental results demonstrate the effectiveness of our approach over the hashing trick for reducing the size of the embedding tables in terms of model loss and accuracy, while retaining a similar reduction in the number of parameters.
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with aug mentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا