ﻻ يوجد ملخص باللغة العربية
We consider a bulk-membrane-coupled partial differential equation in which a single diffusion equation posed within the unit ball is coupled to a two-component reaction diffusion equation posed on the bounding unit sphere through a linear Robin boundary condition. Specifically, within the bulk we consider a process of linear diffusion with point-source generation for a bulk-bound activator. On the bounding surface we consider the classical two-component Brusselator model where the feed term is replaced by the restriction of the bulk-bound activator to the membrane. By considering the singularly perturbed limit of a small diffusivity ratio between the membrane-bound activator and inhibitor species, we use formal asymptotic expansions to construct strongly localized quasi-equilibrium spot solutions and study their linear stability. Our analysis reveals that bulk-membrane-coupling can restrict the existence of localized spot solutions through a recirculation mechanism. In addition we derive stability thresholds that illustrate the effect of coupling on both competition and splitting instabilities. Finally, we use higher-order matched asymptotic expansions to derive a system of differential algebraic equations that describe the slow motion of spots. The potential for new coupling induced dynamical behaviour is illustrated by considering examples of one-, two-, and three-spot solutions.
We analyze a coupled bulk-membrane PDE model in which a scalar linear 2-D bulk diffusion process is coupled through a linear Robin boundary condition to a two-component 1-D reaction-diffusion (RD) system with Gierer-Meinhardt (nonlinear) reaction kin
Localized spot patterns, where one or more solution components concentrates at certain points in the domain, are a common class of localized pattern for reaction-diffusion systems, and they arise in a wide range of modeling scenarios. In an arbitrary
A hybrid asymptotic-numerical theory is developed to analyze the effect of different types of localized heterogeneities on the existence, linear stability, and slow dynamics of localized spot patterns for the two-component Schnakenberg reaction-diffu
The existence and stability of localized patterns of criminal activity are studied for the reaction-diffusion model of urban crime that was introduced by Short et. al. [Math. Models. Meth. Appl. Sci., 18, Suppl. (2008), pp. 1249--1267]. Such patterns
The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator