ﻻ يوجد ملخص باللغة العربية
A trade-off between accuracy and fairness is almost taken as a given in the existing literature on fairness in machine learning. Yet, it is not preordained that accuracy should decrease with increased fairness. Novel to this work, we examine fair classification through the lens of mismatched hypothesis testing: trying to find a classifier that distinguishes between two ideal distributions when given two mismatched distributions that are biased. Using Chernoff information, a tool in information theory, we theoretically demonstrate that, contrary to popular belief, there always exist ideal distributions such that optimal fairness and accuracy (with respect to the ideal distributions) are achieved simultaneously: there is no trade-off. Moreover, the same classifier yields the lack of a trade-off with respect to ideal distributions while yielding a trade-off when accuracy is measured with respect to the given (possibly biased) dataset. To complement our main result, we formulate an optimization to find ideal distributions and derive fundamental limits to explain why a trade-off exists on the given biased dataset. We also derive conditions under which active data collection can alleviate the fairness-accuracy trade-off in the real world. Our results lead us to contend that it is problematic to measure accuracy with respect to data that reflects bias, and instead, we should be considering accuracy with respect to ideal, unbiased data.
We empirically investigate the best trade-off between sparse and uniformly-weighted multiple kernel learning (MKL) using the elastic-net regularization on real and simulated datasets. We find that the best trade-off parameter depends not only on the
We consider a user releasing her data containing some personal information in return of a service. We model users personal information as two correlated random variables, one of them, called the secret variable, is to be kept private, while the other
In this work we study the fundamental limits of approximate recovery in the context of group testing. One of the most well-known, theoretically optimal, and easy to implement testing procedures is the non-adaptive Bernoulli group testing problem, whe
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory u
We provide a general framework for characterizing the trade-off between accuracy and robustness in supervised learning. We propose a method and define quantities to characterize the trade-off between accuracy and robustness for a given architecture,