Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with small quotient graphs. We enumerate the 25 periodic isotopy classes of depth 1 embedded nets with a single vertex quotient graph. Additionally, we classify embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, and determine their maximal symmetry periodic isotopes. We also introduce the methodology of linear graph knots on the flat 3-torus [0, 1)^3. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.