ﻻ يوجد ملخص باللغة العربية
Quantitative myocardial perfusion mapping has advantages over qualitative assessment, including the ability to detect global flow reduction. However, it is not clinically available and remains as a research tool. Building upon the previously described imaging sequence, this paper presents algorithm and implementation of an automated solution for inline perfusion flow mapping with step by step performance characterization. An inline perfusion flow mapping workflow is proposed and demonstrated on normal volunteers. Initial evaluation demonstrates the fully automated proposed solution for the respiratory motion correction, AIF LV mask detection and pixel-wise mapping, from free-breathing myocardial perfusion imaging.
Magnetic resonance $T_2^*$ mapping and quantitative susceptibility mapping (QSM) provide direct and precise mappings of tissue contrasts. They are widely used to study iron deposition, hemorrhage and calcification in various clinical applications. In
An end-to-end image analysis pipeline is presented for the abdominal MRI protocol used in the UK Biobank on the first 38,971 participants. Emphasis is on the processing steps necessary to ensure a high-level of data quality and consistency is produce
Recent development of quantitative myocardial blood flow (MBF) mapping allows direct evaluation of absolute myocardial perfusion, by computing pixel-wise flow maps. Clinical studies suggest quantitative evaluation would be more desirable for objectiv
Accurate automatic classification of major tissue classes and the cerebrospinal fluid in pediatric MR scans of early childhood brains remains a challenge. A poor and highly variable grey matter and white matter contrast on T1-weighted MR scans of dev
Light-ion microbeams provide a unique opportunity to irradiate biological samples at the cellular level and to investigate radiobiological effects at low doses of high LET ionising radiation. Since 1998 a single-ion irradiation facility has been deve