ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics: A Clean Diagnostic for Separating Supernova Remnants from HII Regions in Nearby Galaxies

91   0   0.0 ( 0 )
 نشر من قبل Sean Points
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many more supernova remnants (SNRs) are now known in external galaxies than in the Milky Way. Most of these SNRs have been identified using narrow-band imaging, separating SNRs from HII regions on the basis of [SII]:H-alpha ratios that are elevated compared to HII regions. However, the boundary between SNRs and HII regions is not always distinct, especially at low surface brightness. Here we explore velocity structure as a possible criterion for separating SNRs from HII regions, using a sample of well-studied SNRs in the Large Magellanic Cloud (LMC) as well as a small number of SNRs in the galaxy M83. We find, perhaps not surprisingly, that even at large diameters, SNRs exhibit velocity broadening sufficient to readily distinguish them from HII regions. We thus suggest that the purity of most extragalactic samples would be greatly improved through spectroscopic observations with a velocity resolution of order 50~km/s$.



قيم البحث

اقرأ أيضاً

Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co mpact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
We present mid-infrared (MIR) spectra of HII regions within star-forming galaxies M83 and M33. Their emission features are compared with Galactic and extragalactic HII regions, HII-type galaxies, starburst galaxies, and Seyfert/LINER type galaxies. O ur main results are as follows: (i) the M33 and M83 HII regions lie in between Seyfert/LINER galaxies and HII-type galaxies in the 7.7/11.3 - 6.2/11.3 plane, while the different sub-samples exhibiting different 7.7/6.2 ratios; (ii) Using the NASA Ames PAH IR Spectroscopic database, we demonstrate that the 6.2/7.7 ratio does not effectively track PAH size, but the 11.3/3.3 PAH ratio does; (iii) variations on the 17 $mu$m PAH band depends on object type; however, there is no dependence on metallicity for both extragalactic HII regions and galaxies; (iv) the PAH/VSG intensity ratio decreases with the hardness of the radiation field and galactocentric radius (Rg), yet the ionization alone cannot account for the variation seen in all of our sources; (v) the relative strength of PAH features does not change significantly with increasing radiation hardness, as measured through the [NeIII]/[NeII] ratio and the ionization index; (vi) We present PAH SFR calibrations based on the tight correlation between the 6.2, 7.7, and 11.3 $mu$m PAH luminosities with the 24 $mu$m luminosity and the combination of the 24 $mu$m and H$alpha$ luminosity; (vii) Based on the total luminosity from PAH and FIR emission, we argue that extragalactic HII regions are more suitable templates in modeling and interpreting the large scale properties of galaxies compared to Galactic HII regions.
We present a new catalogue of radio sources in the face-on spiral galaxy M83. Radio observations taken in 2011, 2015, and 2017 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz have detected 270 radio sources. Although a small number of these sources are background extragalactic sources, most are either H II regions or supernova remnants (SNRs) within M83 itself. Three of the six historical supernovae are detected, as is the very young remnant that had been identified in a recent study, which is likely the result of a supernova that exploded in the last ~100 years but was missed. All of these objects are generally fading with time. Confusion limits our ability to measure the radio emission from a number of the SNRs in M83, but 64 were detected in unconfused regions, and these have the approximate power-law luminosity function which has been observed in other galaxies. The SNRs in M83 are systematically smaller in diameter and brighter than those that have been detected at radio wavelengths in M33. A number of the radio sources are coincident with X-ray sources in M83; most of these coincident sources turn out to be supernova remnants. Our dual frequency observations are among the most sensitive to date for a spiral galaxy outside the Local Group; despite this we were not able to place realistic constraints on the spectral indices, and as a result, it was not possible to search for supernova remnants based on their radio properties alone.
We present a novel, physically-motivated sub-grid model for HII region feedback within the moving mesh code Arepo, accounting for both the radiation pressure-driven and thermal expansion of the ionised gas surrounding young stellar clusters. We apply this framework to isolated disc galaxy simulations with mass resolutions between $10^3~{rm M}_odot$ and $10^5~{rm M}_odot$ per gas cell. Each simulation accounts for the self-gravity of the gas, the momentum and thermal energy from supernovae, the injection of mass by stellar winds, and the non-equilibrium chemistry of hydrogen, carbon and oxygen. We reduce the resolution-dependence of our model by grouping those HII regions with overlapping ionisation front radii. The Str{o}mgren radii of the grouped HII regions are at best marginally-resolved, so that the injection of purely-thermal energy within these radii has no effect on the interstellar medium. By contrast, the injection of momentum increases the fraction of cold and molecular gas by more than 50 per cent at mass resolutions of $10^3~{rm M}_odot$, and decreases its turbulent velocity dispersion by $sim 10~{rm kms}^{-1}$. The mass-loading of galactic outflows is decreased by an order of magnitude. The characteristic lifetime of the least-massive molecular clouds ($M/{rm M}_odot < 5.6 times 10^4$) is reduced from $sim 18$ Myr to $<10$ Myr, indicating that HII region feedback is effective in destroying these clouds. Conversely, the lifetimes of intermediate-mass clouds ($5.6 times 10^4 < M/{rm M}_odot < 5 times 10^5$) are elongated by $sim 7$ Myr, likely due to a reduction in supernova clustering. The derived cloud lifetimes span the range from $10$-$40$ Myr, in agreement with observations. All results are independent of whether the momentum is injected from a spherical or a blister-type HII region.
In this paper we present the most up-to-date list of nearby galaxies with optically detected supernova remnants (SNRs). We discuss the contribution of the H{alpha} flux from the SNRs to the total H{alpha} flux and its influence on derived star format ion rate (SFR) for 18 galaxies in our sample. We found that the contribution of SNRs flux to the total H{alpha} flux is 5 $pm$ 5 per cent. Due to the observational selection effects, the SNRs contamination of SFRs derived herein represents only a lower limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا