ﻻ يوجد ملخص باللغة العربية
Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in the discrete.
We study composition-valued continuous-time Markov chains that appear naturally in the framework of Chinese Restaurant Processes (CRPs). As time evolves, new customers arrive (up-step) and existing customers leave (down-step) at suitable rates derive
We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such S
We prove a version of the classical Dufresne identity for matrix processes. In particular, we show that the inverse Wishart laws on the space of positive definite r x r matrices can be realized by the infinite time horizon integral of M_t times its t
We consider directed last-passage percolation on the random graph G = (V,E) where V = Z and each edge (i,j), for i < j, is present in E independently with some probability 0 < p <= 1. To every present edge (i,j) we attach i.i.d. random weights v_{i,j
Classical questions in extremal graph theory concern the asymptotics of $operatorname{ex}(G, mathcal{H})$ where $mathcal{H}$ is a fixed family of graphs and $G=G_n$ is taken from a `standard increasing sequence of host graphs $(G_1, G_2, dots)$, most