ﻻ يوجد ملخص باللغة العربية
We introduce a description of a minimal surface in a space with boundary, as the world-hypersurface that the entangling surface traces. It does so by evolving from the boundary to the interior of the bulk under an appropriate geometric flow, whose parameter is the holographic coordinate. We specify this geometric flow for arbitrary bulk geometry. In the case of pure AdS spaces, we implement a perturbative approach for the solution of the flow equation around the boundary. We systematically study both the form of the perturbative solution as well as its dependence on the boundary conditions. This expansion is sufficient for the determination of all the divergent terms of the holographic entanglement entropy, including the logarithmic universal terms in odd spacetime bulk dimensions, for an arbitrary entangling surface, in terms of the extrinsic geometry of the latter.
We show that the Weak Gravity Conjecture (WGC) implies a nontrivial upper bound on the volumes of the minimal-volume cycles in certain homology classes that admit no calibrated representatives. In compactification of type IIB string theory on an orie
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma
A class of exact membrane solutions is quantized.
Minimal area surfaces in AdS$_3$ ending on a given curve at the boundary are dual to planar Wilson loops in N=4 SYM. In previous work it was shown that the problem of finding such surfaces can be recast as the one of finding an appropriate parameteri