ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoninduced Weyl half-metal phase and spin filter effect from topological Dirac semimetals

84   0   0.0 ( 0 )
 نشر من قبل Ming-Xun Deng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently discovered Dirac semimetals (DSMs) with two Dirac nodes, such as Na$_{3}$Bi and Cd$_{2}$As$_{3}$, are regarded to carry the $mathbb{Z}_{2}$ topological charge in addition to the chiral charge. Here, we study the Floquet phase transition of $mathbb{Z}_{2}$ topological DSMs subjected to a beam of circularly polarized light. Due to the resulting interplay of the chiral and $mathbb{Z}_{2}$ charges, the Weyl nodes are not only chirality-dependent but also spin-dependent, which constrains the behaviors in creation and annihilation of the Weyl nodes in pair. Interestingly, we find a novel phase: One spinband is in Weyl semimetal phase while the other spinband is in insulator phase, and we dub it Weyl half-metal (WHM) phase. We further study the spin-dependent transport in a Dirac-Weyl semimetal junction and find a spin filter effect as a fingerprint of existence of the WHM phase. The proposed spin filter effect, based on the WHM bulk band, is highly tunable in a broad parameter regime and robust against magnetic disorder, which is expected to overcome the shortcomings of the previously proposed spin filter based on the topological edge/surface states. Our results offer a unique opportunity to explore the potential applications of topological DSMs in spintronics.



قيم البحث

اقرأ أيضاً

Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, we show ho w the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP (maximum of 800 microV K-1 at 9 T, 109 K) exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. The Nernst effect has a pronounced maximum near T_M=90 +/- 20 K=mu_0/kB (mu_0 is chemical potential at T=0 K). A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at T>=TM, driven by charge neutrality and Dirac band symmetry. Temperature and field dependences of the Nernst effect, an even function of the charge polarity, result from the intrinsically bipolar nature of the Weyl fermions. Through this study, we offer an understanding of the temperature dependence of the position of the electrochemical potential vis-a-vis the Weyl point, and we show a direct connection between topology and the Nernst effect, a potentially robust experimental tool for investigating topological states and the chiral anomaly.
The spin Nernst effect describes a transverse spin current induced by the longitudinal thermal gradient in a system with the spin-orbit coupling. Here we study the spin Nernst effect in a mesoscopic four-terminal cross-bar Weyl semimetal device under a perpendicular magnetic field. By using the tight-binding Hamiltonian combining with the nonequilibrium Greens function method, the three elements of the spin current in the transverse leads and then spin Nernst coefficients are obtained. The results show that the spin Nernst effect in the Weyl semimetal has the essential difference with the traditional one: The z direction spin currents is zero without the magnetic field while it appears under the magnetic field, and the x and y direction spin currents in the two transverse leads flows out or flows in together, in contrary to the traditional spin Nernst effect, in which the spin current is induced by the spin-orbit coupling and flows out from one lead and flows in on the other. So we call it the anomalous spin Nernst effect. In addition, we show that the Weyl semimetals have the center-reversal-type symmetry, the mirror-reversal-type symmetry and the electron-hole-type symmetry, which lead to the spin Nernst coefficients being odd function or even function of the Fermi energy, the magnetic field and the transverse terminals. Moreover, the spin Nernst effect in the Weyl semimetals are strongly anisotropic and its coefficients are strongly dependent on both the direction of thermal gradient and the direction of the transverse lead connection. Three non-equivalent connection modes (x-z, z-x and x-y modes) are studied in detail, and the spin Nernst coefficients for three different modes exhibit very different behaviors. These strongly anisotropic behaviors of the spin Nernst effect can be used as the characterization of magnetic Weyl semimetals.
201 - Zahra Faraei , S. A. Jafari 2021
We start by showing that the most generic spin-singlet pairing in a superconducting Weyl/Dirac semimetal is specified by a $U(1)$ phase $e^{iphi}$ and $two~real~numbers$ $(Delta_s,Delta_5)$ that form a representation of complex algebra. Such a comple x superconducting state realizes a $Z_2times U(1)$ symmetry breaking in the matter sector where $Z_2$ is associated with the chirality. The resulting effective XY theory of the fluctuations of the $U(1)$ phase $phi$ will be now augmented by coupling to another dynamical variable, the $chiral~angle$ $chi$ that defines the polar angle of the complex number $(Delta_s,Delta_5)$. We compute this coupling by considering a Josephson set up. Our energy functional of two phase variables $phi$ and $chi$ allows for the realization of a half-vortex (or double Cooper pair) state and its BKT transition. The half-vortex state is sharply characterized by a flux quantum which is half of the ordinary superconductors. Such a $pi$-periodic Josephson effect can be easily detected as doubled ac Josephson frequency. We further show that the Josephson current $I$ is always accompanied by a $chiral~Josephson~current$ $I_5$. Strain pseudo gauge fields that couple to the $chi$, destabilize the half-vortex state. We argue that our complex superconductor realizes an extension of XY model that supports confinement transition from half-vortex to full vortex excitations.
We propose an unconventional type of Hall effect in a topological Dirac semimetal with ferromagnetic electrodes. The topological Dirac semimetal itself has time-reversal symmetry, whereas attached ferromagnetic electrodes break it, causing the large Hall response. This induced Hall effect is a characteristic of the helical surface/edge states that arise in topological materials, such as topological Dirac semimetals or quantum spin Hall insulators. We compute the Hall conductance/resistance and the Hall angle by using a lattice model with four-terminal geometry. For topological Dirac semimetals with four electrodes, the induced Hall effect occurs whether the current electrodes or the voltage electrodes are ferromagnetic. When the spins in electrodes are almost fully polarized, the Hall angle becomes as large as that of quantum Hall states or ideal magnetic Weyl semimetals. We show the robustness of the induced Hall effect against impurities and also discuss the spin injection and spin decay problems. This Hall response can be used to detect whether the magnetizations of the two ferromagnetic electrodes are parallel or antiparallel.
Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for the temperature. Besides the conventional Dyakonov-Shur insta bility for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems. These two instabilities occur for the opposite directions of fluid flow. While the Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in 2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا