ﻻ يوجد ملخص باللغة العربية
Let $hat{F}$ be a free pro-$p$ non-abelian group, and let $Delta$ be a commutative Noetherian complete local ring with a maximal ideal $I$ such that $textrm{char}(Delta/I)=p>0$. In [Zu], Zubkov showed that when $p eq2$, the pro-$p$ congruence subgroup $$GL_{2}^{1}(Delta)=ker(GL_{2}(Delta)overset{DeltatoDelta/I}{longrightarrow}GL_{2}(Delta/I))$$ admits a pro-$p$ identity, i.e., there exists an element $1 eq winhat{F}$ that vanishes under any continuous homomorphism $hat{F}to GL_{2}^{1}(Delta)$. In this paper we investigate the case $p=2$. The main result is that when $textrm{char}(Delta)=2$, the pro-$2$ group $GL_{2}^{1}(Delta)$ admits a pro-$2$ identity. This result was obtained by the use of trace identities that originate in PI-theory.
We initiate an investigation of lattices in a new class of locally compact groups, so called locally pro-$p$-complete Kac-Moody groups. We discover that in rank 2 their cocompact lattices are particularly well-behaved: under mild assumptions, a cocom
We study 3-dimensional Poincare duality pro-$p$ groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-$p$ group $G$ has a nontrivial finitely presented subnormal subgroup of infinite index, then either th
The authors have shown previously that every locally pro-p contraction group decomposes into the direct product of a p-adic analytic factor and a torsion factor. It has long been known that p-adic analytic contraction groups are nilpotent. We show he
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
We show that for every finitely generated closed subgroup $K$ of a non-solvable Demushkin group $G$, there exists an open subgroup $U$ of $G$ containing $K$, and a continuous homomorphism $tau colon U to K$ satisfying $tau(k) = k$ for every $k in K$.