ﻻ يوجد ملخص باللغة العربية
If $M prec N$ are models of Peano Arithmetic and Lt$(N/M)$ is the pentagon lattice $N_5$, then $N$ is either a cofinal or an end extension of $M$. In contrast, there are $M prec N$ that are models of PA* (PA in a language with countably many new predicate symbols) such that Lt$(N/M) cong N_5$ and $N$ is neither a cofinal nor an end extension of $M$.
Simpson showed that every countable model $mathcal{M} models mathsf{PA}$ has an expansion $(mathcal{M}, X) models mathsf{PA}^*$ that is pointwise definable. A natural question is whether, in general, one can obtain expansions of a non-prime model in
We study notions of genericity in models of $mathsf{PA}$, inspired by lines of inquiry initiated by Chatzidakis and Pillay and continued by Dolich, Miller and Steinhorn in general model-theoretic contexts. These papers studied the theories obtained b
A subset of a model of ${sf PA}$ is called neutral if it does not change the $mathrm{dcl}$ relation. A model with undefinable neutral classes is called neutrally expandable. We study the existence and non-existence of neutral sets in various models o
Inspired by a mathematical riddle involving fuses, we define the fusible numbers as follows: $0$ is fusible, and whenever $x,y$ are fusible with $|y-x|<1$, the number $(x+y+1)/2$ is also fusible. We prove that the set of fusible numbers, ordered by t
We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, $mathcal{D}_{h}$. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in