ﻻ يوجد ملخص باللغة العربية
We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi ($gamma$ rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented $gamma$-ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 $pm$ 63)$times$10$^{-8}$ ph cm$^{-2}$ s$^{-1}$, corresponding to a luminosity of (2.2 $pm$ 0.1)$times$10$^{50}$ erg s$^{-1}$, was reached on 2016 December 28. These four $gamma$-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and $gamma$-ray activity is found. The $gamma$-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This $gamma$-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.
The flat spectrum radio quasar CTA 102 ($z = 1.032$) went through a tremendous phase of variability. Since early 2016 the gamma-ray flux level has been significantly higher than in previous years. It was topped by a four month long giant outburst, wh
The blazar CTA 102 underwent a major radio flare in April 2006. We used several 15 GHz VLBI observations from the MOJAVE program to investigate the influence of this extreme event on jet kinematics. The result of modeling and analysis lead to the sug
Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to shed light on the crucial physical processes giving rise to the jet formation, as well as to its extraordinary radiation output up to gamma-ray
Flat spectrum radio quasars (FSRQs) can suffer strong absorption above E = 25/(1+z) GeV, due to gamma-gamma interaction if the emitting region is at sub-parsec scale from the super-massive black hole (SMBH). Gamma-ray flares from these astrophysical
In late 2016 and early 2017 the flat spectrum radio quasar CTA 102 exhibited a very strong and long-lasting outburst. The event can be described by a roughly 2 months long increase of the baseline flux in the monitored energy bands (optical to $gamma