ﻻ يوجد ملخص باللغة العربية
We consider compactifications of $6d$ minimal $(D_{N+3},D_{N+3})$ type conformal matter SCFTs on a generic Riemann surface. We derive the theories corresponding to three punctured spheres (trinions) with three maximal punctures, from which one can construct models corresponding to generic surfaces. The trinion models are simple quiver theories with $mathcal{N}=1$ $SU(2)$ gauge nodes. One of the three puncture non abelian symmetries is emergent in the IR. The derivation of the trinions proceeds by analyzing RG flows between conformal matter SCFTs with different values of $N$ and relations between their subsequent reductions to $4d$. In particular, using the flows we first derive trinions with two maximal and one minimal punctures, and then we argue that collections of $N$ minimal punctures can be interpreted as a maximal one. This suggestion is checked by matching the properties of the $4d$ models such as `t Hooft anomalies, symmetries, and the structure of the conformal manifold to the expectations from $6d$. We then use the understanding that collections of minimal punctures might be equivalent to maximal ones to construct trinions with three maximal punctures, and then $4d$ theories corresponding to arbitrary surfaces, for $6d$ models described by two $M5$ branes probing a $mathbb{Z}_k$ singularity. This entails the introduction of a novel type of maximal puncture. Again, the suggestion is checked by matching anomalies, symmetries and the conformal manifold to expectations from six dimensions. These constructions thus give us a detailed understanding of compactifications of two sequences of six dimensional SCFTs to four dimensions.
We propose new five-dimensional gauge theory descriptions of six-dimensional $mathcal{N}=(1,0)$ superconformal field theories arising from type IIA brane configurations including an $ON^0$-plane. The new five-dimensional gauge theories may have $SO$,
We study twisted circle compactification of 6d $(2,0)$ SCFTs to 5d $mathcal{N} = 2$ supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mi
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs w
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $