ﻻ يوجد ملخص باللغة العربية
The magnetoresistance (MR) of SrTiO$_3$ is theoretically investigated based on the Boltzmann equation by considering its detailed band structure. The formula for MR proposed by Mackey and Sybert is extended to be applicable to a system with an arbitrarily shaped Fermi surface. It is shown that the angular dependence of the diagonal component of the mass tensor causes transverse MR, whereas that of the off-diagonal component causes longitudinal MR with only a single closed Fermi surface, which overturns the textbook understanding of MR. The calculated MR (300% at 10 T) quantitatively agrees with the experimental results for SrTiO$_3$ including the behavior of the linear MR. The negative Gaussian curvature of the Fermi surface of SrTiO$_3$ and its resulting negative longitudinal and transverse MR are also discussed.
The 2D electron gas (2DEG) formed at the surface of SrTiO$_3$(001) has attracted great interest because of its fascinating physical properties and potential as a novel electronic platform, but up to now has eluded a comprehensible way to tune its pro
We report on the temperature and electric field driven evolution of the magnetoresistance lineshape at an interface between Ni/AlO$_x$ and Nb-doped SrTiO$_3$. This is manifested as a superposition of the Lorentzian lineshape due to spin accumulation
We measured the magnetoresistance of the 2D electron liquid formed at the (111) LaAlO$_3$/SrTiO$_3$ interface. The hexagonal symmetry of the interface is manifested in a six-fold crystalline component appearing in the anisotropic magnetoresistance (A
The increasing availability of a variety of two-dimensional materials has generated enormous growth in the field of nanoengineering and nanomechanics. Recent developments in thin film synthesis have enabled the fabrication of freestanding functional
This review provides a summary of the rich physics expressed within SrTiO$_3$-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., sem