ﻻ يوجد ملخص باللغة العربية
Matrix completion is about recovering a matrix from its partial revealed entries, and it can often be achieved by exploiting the inherent simplicity or low dimensional structure of the target matrix. For instance, a typical notion of matrix simplicity is low rank. In this paper we study matrix completion based on another low dimensional structure, namely the low rank Hankel structure in the Fourier domain. It is shown that matrices with this structure can be exactly recovered by solving a convex optimization program provided the sampling complexity is nearly optimal. Empirical results are also presented to justify the effectiveness of the convex method.
This work considers two popular minimization problems: (i) the minimization of a general convex function $f(mathbf{X})$ with the domain being positive semi-definite matrices; (ii) the minimization of a general convex function $f(mathbf{X})$ regulariz
We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least
In a typical MIMO radar scenario, transmit nodes transmit orthogonal waveforms, while each receive node performs matched filtering with the known set of transmit waveforms, and forwards the results to the fusion center. Based on the data it receives
Suppose that a solution $widetilde{mathbf{x}}$ to an underdetermined linear system $mathbf{b} = mathbf{A} mathbf{x}$ is given. $widetilde{mathbf{x}}$ is approximately sparse meaning that it has a few large components compared to other small entries.
The task of reconstructing a matrix given a sample of observedentries is known as the matrix completion problem. It arises ina wide range of problems, including recommender systems, collaborativefiltering, dimensionality reduction, image processing,