ﻻ يوجد ملخص باللغة العربية
A recent result of Freeman, Odell, Sari, and Zheng states that whenever a separable Banach space not containing $ell_1$ has the property that all asymptotic models generated by weakly null sequences are equivalent to the unit vector basis of $c_0$ then the space is Asymptotic $c_0$. We show that if we replace $c_0$ with $ell_1$ then this result is no longer true. Moreover, a stronger result of B. Maurey - H. P. Rosenthal type is presented, namely, there exists a reflexive Banach space with an unconditional basis admitting $ell_1$ as a unique asymptotic model whereas any subsequence of the basis generates a non-Asymptotic $ell_1$ subspace.
We prove the support recovery for a general class of linear and nonlinear evolutionary partial differential equation (PDE) identification from a single noisy trajectory using $ell_1$ regularized Pseudo-Least Squares model~($ell_1$-PsLS). In any assoc
James Tree Space ($mathcal{JT}$), introduced by R. James, is the first Banach space constructed having non-separable conjugate and not containing $ell^1$. James actually proved that every infinite dimensional subspace of $mathcal{JT}$ contains a Hilb
We show that the two-dimensional minimum-volume central section of the $n$-dimensional cross-polytope is attained by the regular $2n$-gon. We establish stability-type results for hyperplane sections of $ell_p$-balls in all the cases where the extremi
We study Banach spaces X with a strongly asymptotic l_p basis (any disjointly supported finite set of vectors far enough out with respect to the basis behaves like l_p) which are minimal (X embeds into every infinite dimensional subspace). In particular such spaces embed into l_p.
We examine a variant of a Banach space $mathfrak{X}_{0,1}$ defined by Argyros, Beanland, and the second named author that has the property that it admits precisely two spreading models in every infinite dimensional subspace. We prove that this space