ﻻ يوجد ملخص باللغة العربية
Given a double cover $pi: mathcal{G} rightarrow hat{mathcal{G}}$ of finite groupoids, we explicitly construct twisted loop transgression maps, $tau_{pi}$ and $tau_{pi}^{ref}$, thereby associating to a Jandl $n$-gerbe $hat{lambda}$ on $hat{mathcal{G}}$ a Jandl $(n-1)$-gerbe $tau_{pi}(hat{lambda})$ on the quotient loop groupoid of $mathcal{G}$ and an ordinary $(n-1)$-gerbe $tau^{ref}_{pi}(hat{lambda})$ on the unoriented quotient loop groupoid of $mathcal{G}$. For $n =1,2$, we interpret the character theory (resp. centre) of the category of Real $hat{lambda}$-twisted $n$-vector bundles over $hat{mathcal{G}}$ in terms of flat sections of the $(n-1)$-vector bundle associated to $tau_{pi}^{ref}(hat{lambda})$ (resp. the Real $(n-1)$-vector bundle associated to $tau_{pi}(hat{lambda})$). We relate our results to Re
A base $Delta$ generating the topology of a space $M$ becomes a partially ordered set (poset), when ordered under inclusion of open subsets. Given a precosheaf over $Delta$ of fixed-point spaces (typically C*-algebras) under the action of a group $G$
For every $infty$-category $mathscr{C}$, there is a homotopy $n$-category $mathrm{h}_n mathscr{C}$ and a canonical functor $gamma_n colon mathscr{C} to mathrm{h}_n mathscr{C}$. We study these higher homotopy categories, especially in connection with
We construct a state-sum type invariant of smooth closed oriented $4$-manifolds out of a $G$-crossed braided spherical fusion category ($G$-BSFC) for $G$ a finite group. The construction can be extended to obtain a $(3+1)$-dimensional topological qua
This paper provides a conceptual study of the twisting procedure, which amounts to create functorially new differential graded Lie algebras, associative algebras or operads (as well as their homoto
This paper describes a relationship between essentially finite groupoids and 2-vector spaces. In particular, we show to construct 2-vector spaces of Vect-valued presheaves on such groupoids. We define 2-linear maps corresponding to functors between g