ﻻ يوجد ملخص باللغة العربية
Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds.
Trajectory interpolation, the process of filling-in the gaps and removing noise from observed agent trajectories, is an essential task for the motion inference in multi-agent setting. A desired trajectory interpolation method should be robust to nois
In this paper we present a novel crowd simulation method by modeling the generation and contagion of panic emotion under multi-hazard circumstances. Specifically, we first classify hazards into different types (transient and persistent, concurrent an
Activity-based models, as a specific instance of agent-based models, deal with agents that structure their activity in terms of (daily) activity schedules. An activity schedule consists of a sequence of activity instances, each with its assigned star
The rapid growth of ride-hailing platforms has created a highly competitive market where businesses struggle to make profits, demanding the need for better operational strategies. However, real-world experiments are risky and expensive for these plat
Antagonistic crowd behaviors are often observed in cases of serious conflict. Antagonistic emotions, which is the typical psychological state of agents in different roles (i.e. cops, activists, and civilians) in crowd violent scenes, and the way they