ﻻ يوجد ملخص باللغة العربية
This paper introduces a taxonomy of manipulations as seen especially in cooking for 1) grouping manipulations from the robotics point of view, 2) consolidating aliases and removing ambiguity for motion types, and 3) provide a path to transferring learned manipulations to new unlearned manipulations. Using instructional videos as a reference, we selected a list of common manipulation motions seen in cooking activities grouped into similar motions based on several trajectory and contact attributes. Manipulation codes are then developed based on the taxonomy attributes to represent the manipulation motions. The manipulation taxonomy is then used for comparing motion data in the Daily Interactive Manipulation (DIM) data set to reveal their motion similarities.
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal while avoiding obstacles in uncertain environments. First, we use stochastic model predictive cont
Wheeled-legged robots combine the efficiency of wheeled robots when driving on suitably flat surfaces and versatility of legged robots when stepping over or around obstacles. This paper introduces a planning and control framework to realise dynamic l
This paper studies jumping for wheeled-bipedal robots, a motion that takes full advantage of the benefits from the hybrid wheeled and legged design features. A comprehensive hierarchical scheme for motion planning and control of jumping with wheeled-
In this paper we present a new approach for dynamic motion planning for legged robots. We formulate a trajectory optimization problem based on a compact form of the robot dynamics. Such a form is obtained by projecting the rigid body dynamics onto th
Reliable real-time planning for robots is essential in todays rapidly expanding automated ecosystem. In such environments, traditional methods that plan by relaxing constraints become unreliable or slow-down for kinematically constrained robots. This