ﻻ يوجد ملخص باللغة العربية
The current sparse wavelength range coverage of exoplanet direct imaging observations, and the fact that models are defined using a finite wavelength range, lead both to uncertainties on effective temperature determination.We study these effects using black-bodies and atmospheric models and we detail how to infer this parameter. Through highlighting the key wavelength coverage that allows for a more accurate representation of the effective temperature, our analysis can be used to mitigate or manage extra uncertainties being added in the analysis from the models. We find that the wavelength range coverage will soon no longer be a problem. An effective temperature computed by integrating the spectroscopic observations of the James Webb Space Telescope (JWST) will give uncertainties similar to, or better than, the current state-of-the-art, which is to fit models to data. Accurately calculating the effective temperature will help to improve current modelling approaches. Obtaining an independent and precise estimation of this crucial parameter will help the benchmarking process to identify the best practice to model exoplanet atmospheres.
Given the forthcoming launch of the James Webb Space Telescope (JWST) which will allow observ- ing exoplanet atmospheres with unprecedented signal-over-noise ratio, spectral coverage and spatial resolution, the uncertainties in the atmosphere modelli
This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characte
Further advances in exoplanet detection and characterisation require sampling a diverse population of extrasolar planets. One technique to detect these distant worlds is through the direct detection of their thermal emission. The so-called direct ima
We present results of deep direct imaging of the radial velocity (RV) planet-host star 14 Her (=GJ 614, HD 145675), obtained in the lprime ~band with the Clio-2 camera and the MMT adaptive optics system. This star has one confirmed planet and an unco
In the last decade, about a dozen giant exoplanets have been directly imaged in the IR as companions to young stars. With photometry and spectroscopy of these planets in hand from new extreme coronagraphic instruments such as SPHERE at VLT and GPI at