ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Magnetic Order in Spinel ZnFe$_2$O$_4$ Thin Films Through Intrinsic Defect Manipulation

98   0   0.0 ( 0 )
 نشر من قبل Vitaly Zviagin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic study of the magnetic properties of semiconducting ZnFe$_2$O$_4$ thin films fabricated by pulsed laser deposition at low and high oxygen partial pressure and annealed in oxygen and argon atmosphere, respectively. The magnetic response is enhanced by annealing the films at 250$^{circ}$C and diminished at annealing temperatures above 300$^{circ}$C. The initial increase is attributed to the formation of oxygen vacancies after argon treatment, evident by the increase in the low energy absorption at $sim$ 0.9 eV involving Fe$^{2+}$ cations. The weakened magnetic response is related to a decline in disorder with a cation redistribution toward a normal spinel configuration. The structural renormalization is consistent with the decrease and increase in oscillator strength of respective electronic transitions involving tetrahedrally (at $sim$ 3.5 eV) and octahedrally (at $sim$ 5.7 eV) coordinated Fe$^{3+}$ cations.



قيم البحث

اقرأ أيضاً

AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thi n films. By characterizing the structural and electronic properties of films grown along (001) and (111) directions, the influence of growth orientation has been studied. Despite distinctly different growth modes observed during deposition, the comprehensive characterization reveals no measurable disorder in the cation distribution nor multivalency issue for Cr ions in either orientation. Contrary to a naive expectation, the (111) stabilized films exhibit a smoother surface and a higher degree of crystallinity than (001)-oriented films. The preference in growth orientation is explained within the framework of heteroepitaxial stabilization in connection to a significantly lower (111) surface energy. These findings open broad opportunities in the fabrication of 2D kagome-triangular heterostructures with emergent magnetic behavior inaccessible in bulk crystals.
The N$acute{rm e}$el temperature of the new frustrated family of Sremph{RE}$_2$O$_4$ (emph{RE} = rare earth) compounds is yet limited to $sim$ 0.9 K, which more or less hampers a complete understanding of the relevant magnetic frustrations and spin i nteractions. Here we report on a new frustrated member to the family, SrTb$_2$O$_4$ with a record $T_{rm N}$ = 4.28(2) K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound SrTb$_2$O$_4$ displays an incommensurate antiferromagnetic (AFM) order with a transverse wave vector textbf{Q}$^{rm 0.5 K}_{rm AFM}$ = (0.5924(1), 0.0059(1), 0) albeit with partially-ordered moments, 1.92(6) $mu_{rm B}$ at 0.5 K, stemming from only one of the two inequivalent Tb sites mainly by virtue of their different octahedral distortions. The localized moments are confined to the emph{bc} plane, 11.9(66)$^circ$ away from the emph{b} axis probably by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN) ferromagnetic (FM) arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb$_2$O$_4$ a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.
111 - H. Li , A. Thayil , C.T.K. Lew 2020
The steady-state, space-charge-limited piezoresistance (PZR) of defect-engineered, silicon-on-insulator device layers containing silicon divacancy defects changes sign as a function of applied bias. Above a punch-through voltage ($V_t$) corresponding to the onset of a space-charge-limited hole current, the longitudinal $langle 110 rangle$ PZR $pi$-coefficient is $pi approx 65 times 10^{-11}$~Pa$^{-1}$, similar to the value obtained in charge-neutral, p-type silicon. Below $V_t$, the mechanical stress dependence of the Shockley-Read-Hall (SRH) recombination parameters, specifically the divacancy trap energy $E_T$ which is estimated to vary by $approx 30$~$mu$V/MPa, yields $pi approx -25 times 10^{-11}$~Pa$^{-1}$. The combination of space-charge-limited transport and defect engineering which significantly reduces SRH recombination lifetimes makes this work directly relevant to discussions of giant or anomalous PZR at small strains in nano-silicon whose characteristic dimension is larger than a few nanometers. In this limit the reduced electrostatic dimensionality lowers $V_t$ and amplifies space-charge-limited currents and efficient SRH recombination occurs via surface defects. The results reinforce the growing evidence that in steady state, electro-mechanically active defects can result in anomalous, but not giant, PZR.
423 - D. Chen , Y.-L. Jia , T.-T. Zhang 2017
We performed a Raman scattering study of thin films of LiTi$_2$O$_4$ spinel oxide superconductor. We detected four out of five Raman active modes, with frequencies in good accordance with our first-principles calculations. Three T$_{2g}$ modes show a Fano lineshape from 5 K to 295 K, which suggests an electron-phonon coupling in LiTi$_2$O$_4$. Interestingly, the electron-phonon coupling shows an anomaly across the negative to positive magnetoresistance transition at 50 K, which may be due to the unset of other competing orders. The strength of the electron-phonon interaction estimated from the Allens formula and the observed lineshape parameters suggests that the three T$_{2g}$ modes contribute little to superconductivity.
We determined the magnetic structure of CuCr$_2$O$_4$ using neutron diffraction and irreducible representation analysis. The measurements identified a new phase between 155 K and 125 K as nearly collinear magnetic ordering in the Cr pyrochlore lattic e. Below 125 K, a Cu-Cr ferrimagnetic component develops the noncollinear order. Along with the simultaneously obtained O positions and the quantum effect of spin-orbit coupling, the magnetic structure is understood to involve spin-orbit ordering, accompanied by an appreciably deformed orbital of presumably spin-only Cu and Cr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا