ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group

117   0   0.0 ( 0 )
 نشر من قبل Nikolay Britavskiy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Increasing the statistics of evolved massive stars in the Local Group enables investigating their evolution at different metallicities. During the late stages of stellar evolution, the physics of some phenomena, such as episodic and systematic mass loss, are not well constrained. For example, the physical properties of red supergiants (RSGs) in different metallicity regimes remain poorly understood. Thus, we initiated a systematic study of RSGs in dwarf irregular galaxies (dIrrs) in the Local Group. The target selection is based on 3.6 $mu$m and 4.5 $mu$m photometry from archival Spitzer Space Telescope images of nearby galaxies. We selected 46 targets in the dIrrs IC 10, IC 1613, Sextans B, and the Wolf-Lundmark-Melotte (WLM) galaxy that we observed with the GTC-OSIRIS and VLT-FORS2 instruments. We used several photometric techniques together with a spectral energy distribution analysis to derive the luminosities and effective temperatures of known and newly discovered RSGs. We identified and spectroscopically confirmed 4 new RSGs, 5 previously known RSGs, and 5 massive asymptotic giant branch (AGB) stars. We added known objects from previous observations. In total, we present spectral classification and fundamental physical parameters of 25 late-type massive stars in the following dIrrs: Sextans A, Sextans B, IC 10, IC 1613, Pegasus, Phoenix, and WLM. This includes 17 RSGs and 8 AGB stars that have been identified here and previously. Based on our observational results and PARSEC evolutionary models, we draw the following conclusions: (i) a trend to higher minimum effective temperatures at lower metallicities and (ii) the maximum luminosity of RSGs appears to be constant at $log$($L/L$$_{odot}$) $approx$ $5.5$, independent of the metallicity of the host environment (up to $mathrm{[Fe/H]}$ $approx$ $-1$ dex).



قيم البحث

اقرأ أيضاً

139 - Emily M. Levesque 2013
Galaxies in the Local Group span a factor of 15 in metallicity, ranging from the super-solar M31 to the Wolf-Lundmark-Melotte (WLM) galaxy, which is the lowest-metallicity (0.1xZsun) Local Group galaxy currently forming stars. Studies of massive star populations across this broad range of environments have revealed important metallicity-dependent evolutionary trends, allowing us to test the accuracy of stellar evolutionary tracks at these metallicities for the first time. The RSG population is particularly valuable as a key mass-losing phase of moderately massive stars and a source of core-collapse supernova progenitors. By reviewing recent work on the RSG populations in the Local Group, we are able to quantify limits on these stars effective temperatures and masses and probe the relationship between RSG mass loss behaviors and host environments. Extragalactic surveys of RSGs have also revealed several unusual RSGs that display signs of unusual spectral variability and dust production, traits that may potentially also correlate with the stars host environments. I will present some of the latest work that has progressed our understanding of RSGs in the Local Group, and consider the many new questions posed by our ever-evolving picture of these stars.
The near and mid-infrared characteristics of large amplitude, Mira, variables in Local Group dwarf irregular galaxies (LMC, NGC 6822, IC 1613, Sgr dIG) are described. Two aspects of these variables are discussed. First, the short period (P < 420 days ) Miras are potentially powerful distance indicators, provided that they have low circumstellar extinction, or can be corrected for extinction. These are the descendants of relatively low mass stars. Secondly, the longer period stars, many of which undergo hot bottom burning, are poorly understood. These provide new insight into the evolution of intermediate mass stars during the high mass-loss phases, but their use as distance indicators depends on a much firmer understanding of their evolution. The change in slope of the K period luminosity relation for O-rich stars that is seen around 400 to 420 days in the LMC is due to the onset of hot bottom burning. It will be sensitive to metallicity and should therefore be expected at different periods in populations with significant differences from the LMC. The [4.5] period-luminosity relation splits into two approximately parallel sequences. The fainter one fits stars where the mid-infrared flux originates from the stellar photosphere, while the brighter one fits observations dominated by the circumstellar shell.
We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 msol, suggesting an initial mass well above 8~msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.
145 - Emily Levesque 2009
Red supergiants (RSGs) are a He-burning phase in the evolution of moderately massive stars (10-25 solar masses). For many years, the assumed physical properties of these stars placed them at odds with the predictions of evolutionary theory. We have r ecently determined new effective temperatures and luminosities for the RSG populations of galaxies with a factor of ~8 range in metallicity, including the Milky Way, the Magellanic Clouds, and M31. We find that these new physical properties greatly improve the agreement between the RSGs and the evolutionary tracks, although there are still notable difficulties with modeling the physical properties of RSGs at low metallicity. We have also examined several unusual RSGs, including VY CMa in the Milky Way, WOH G64 in the LMC, and a sample of four RSGs in the Magellanic Clouds that show considerable variations in their physical parameters, most notably their effective temperatures. For all of these stars we reexamine their placement on the H-R diagram, where they have appeared to occupy the forbidden region to the right of the Hayashi track. We have updated current understanding of the physical properties of VY CMa and WOH G64; in the case of the unusual Magellanic Cloud variables, we conclude that these stars are undergoing an unstable evolutionary phase not previously associated with RSGs.
The mass-loss rates of red supergiant stars (RSGs) are poorly constrained by direct measurements, and yet the subsequent evolution of these stars depends critically on how much mass is lost during the RSG phase. In 2012 the Geneva evolutionary group updated their mass-loss prescription for RSGs with the result that a 20 solar mass star now loses 10x more mass during the RSG phase than in the older models. Thus, higher mass RSGs evolve back through a second yellow supergiant phase rather than exploding as Type II-P supernovae, in accord with recent observations (the so-called RSG Problem). Still, even much larger mass-loss rates during the RSG phase cannot be ruled out by direct measurements of their current dust-production rates, as such mass-loss is episodic. Here we test the models by deriving a luminosity function for RSGs in the nearby spiral galaxy M31 which is sensitive to the total mass loss during the RSG phase. We carefully separate RSGs from asymptotic giant branch stars in the color-magnitude diagram following the recent method exploited by Yang and collaborators in their Small Magellanic Cloud studies. Comparing our resulting luminosity function to that predicted by the evolutionary models shows that the new prescription for RSG mass-loss does an excellent job of matching the observations, and we can readily rule out significantly larger values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا