ﻻ يوجد ملخص باللغة العربية
Stochastic models of chemical reaction networks are an important tool to describe and analyze noise effects in cell biology. When chemical species and reaction rates in a reaction system have different orders of magnitude, the associated stochastic system is often modeled in a multiscale regime. It is known that multiscale models can be approximated with a reduced system such as mean field dynamics or hybrid systems, but the accuracy of the approximation remains unknown. In this paper, we estimate the probability distribution of low copy species in multiscale stochastic reaction systems under short-time scale. We also establish an error bound for this approximation. Throughout the manuscript, typical mass action systems are mainly handled, but we also show that the main theorem can extended to general kinetics, which generalizes existing results in the literature. Our approach is based on a direct analysis of the Kolmogorov equation, in contrast to classical approaches in the existing literature.
Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic
We consider discrete-space continuous-time Markov models of reaction networks and provide sufficient conditions for the following stability condition to hold: each state in a closed, irreducible component of the state space is positive recurrent; mor
In this paper we develop a metastability theory for a class of stochastic reaction-diffusion equations exposed to small multiplicative noise. We consider the case where the unperturbed reaction-diffusion equation features multiple asymptotically stab
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provid
The probability distribution describing the state of a Stochastic Reaction Network evolves according to the Chemical Master Equation (CME). It is common to estimated its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (