ﻻ يوجد ملخص باللغة العربية
We study the complexity of Gaussian mixed states in a free scalar field theory using the purification complexity. The latter is defined as the lowest value of the circuit complexity, optimized over all possible purifications of a given mixed state. We argue that the optimal purifications only contain the essential number of ancillary degrees of freedom necessary in order to purify the mixed state. We also introduce the concept of mode-by-mode purifications where each mode in the mixed state is purified separately and examine the extent to which such purifications are optimal. We explore the purification complexity for thermal states of a free scalar QFT in any number of dimensions, and for subregions of the vacuum state in two dimensions. We compare our results to those found using the various holographic proposals for the complexity of subregions. We find a number of qualitative similarities between the two in terms of the structure of divergences and the presence of a volume law. We also examine the mutual complexity in the various cases studied in this paper.
We study the influence of angular momentum on quantum complexity for CFT states holographically dual to rotating black holes. Using the holographic complexity=action (CA) and complexity=volume (CV) proposals, we study the full time dependence of comp
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in elliptic de Sitter space dS_4/Z_2, obtained by identifying antipodal points in dS_4. We discuss
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen
Behind certain marginally trapped surfaces one can construct a geometry containing an extremal surface of equal, but not larger area. This construction underlies the Engelhardt-Wall proposal for explaining Bekenstein-Hawking entropy as a coarse-grain
Using a particular Hilbert space representation of minimum-length deformed quantum mechanics, we show that the resolution of the wave-function singularities for strongly attractive potentials, as well as cosmological singularity in the framework of a