ﻻ يوجد ملخص باللغة العربية
Surface phonon polaritons hold much potential for subwavelength control and manipulation of light at the infrared to terahertz wavelengths. Here, aided by monochromatic scanning transmission electron microscopy - electron energy loss spectroscopy technique, we study the excitation of optical phonon modes in SiC nanorods. Surface phonon polaritons are modulated by the geometry and size of SiC nanorods. In particular, we study the dispersion relation, spatial dependence and geometry and size effects of surface phonon polaritons. These experimental results are in agreement with dielectric response theory and numerical simulation. Providing critical information for manipulating light in polar dielectrics, these findings should be useful for design of novel nanoscale phonon-photonic devices.
Surface phonon-polaritons can carry energy on the surface of dielectric films and thus are expected to contribute to heat conduction. However, the contribution of surface phonon-polaritons (SPhPs) to thermal transport has not been experimentally demo
Polariton polarization can be described in terms of a pseudospin which can be oriented along the $x,,y,$ or $z$ axis, similarly to electron and hole spin. Unlike electrons and holes where time-reversal symmetry requires that the spin-orbit interactio
Long-distance propagation of heat carriers is essential for efficient heat dissipation in microelectronics. However, in dielectric nanomaterials, the primary heat carriers - phonons - can propagate ballistically only for hundreds of nanometres, which
Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. In this work, we report sub-diffractive internal structure diagnosis of hexago
We report the effects of variation in length on the electronic structure of CdSe nanorods derived from atomic clusters and passivated by fictitious hydrogen atoms. These nanorods are augmented by attaching gold clusters at both the ends to form a nan