ترغب بنشر مسار تعليمي؟ اضغط هنا

Invasiveness Prediction of Pulmonary Adenocarcinomas Using Deep Feature Fusion Networks

64   0   0.0 ( 0 )
 نشر من قبل Jiechao Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Early diagnosis of pathological invasiveness of pulmonary adenocarcinomas using computed tomography (CT) imaging would alter the course of treatment of adenocarcinomas and subsequently improve the prognosis. Most of the existing systems use either conventional radiomics features or deep-learning features alone to predict the invasiveness. In this study, we explore the fusion of the two kinds of features and claim that radiomics features can be complementary to deep-learning features. An effective deep feature fusion network is proposed to exploit the complementarity between the two kinds of features, which improves the invasiveness prediction results. We collected a private dataset that contains lung CT scans of 676 patients categorized into four invasiveness types from a collaborating hospital. Evaluations on this dataset demonstrate the effectiveness of our proposal.



قيم البحث

اقرأ أيضاً

We propose the fusion discriminator, a single unified framework for incorporating conditional information into a generative adversarial network (GAN) for a variety of distinct structured prediction tasks, including image synthesis, semantic segmentat ion, and depth estimation. Much like commonly used convolutional neural network -- conditional Markov random field (CNN-CRF) models, the proposed method is able to enforce higher-order consistency in the model, but without being limited to a very specific class of potentials. The method is conceptually simple and flexible, and our experimental results demonstrate improvement on several diverse structured prediction tasks.
Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage p ersuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, M2P2 devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules -- an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test M2P2 on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show ) for IPP. M2P2 significantly outperforms 3 recent baselines on both datasets. Our code and QPS dataset can be found at http://snap.stanford.edu/m2p2/.
We address the problem of supporting radiologists in the longitudinal management of lung cancer. Therefore, we proposed a deep learning pipeline, composed of four stages that completely automatized from the detection of nodules to the classification of cancer, through the detection of growth in the nodules. In addition, the pipeline integrated a novel approach for nodule growth detection, which relied on a recent hierarchical probabilistic U-Net adapted to report uncertainty estimates. Also, a second novel method was introduced for lung cancer nodule classification, integrating into a two stream 3D-CNN network the estimated nodule malignancy probabilities derived from a pretrained nodule malignancy network. The pipeline was evaluated in a longitudinal cohort and reported comparable performances to the state of art.
Scene depth information can help visual information for more accurate semantic segmentation. However, how to effectively integrate multi-modality information into representative features is still an open problem. Most of the existing work uses DCNNs to implicitly fuse multi-modality information. But as the network deepens, some critical distinguishing features may be lost, which reduces the segmentation performance. This work proposes a unified and efficient feature selectionand-fusion network (FSFNet), which contains a symmetric cross-modality residual fusion module used for explicit fusion of multi-modality information. Besides, the network includes a detailed feature propagation module, which is used to maintain low-level detailed information during the forward process of the network. Compared with the state-of-the-art methods, experimental evaluations demonstrate that the proposed model achieves competitive performance on two public datasets.
88 - Yikai Wang , Fuchun Sun , Ming Lu 2021
We propose a compact and effective framework to fuse multimodal features at multiple layers in a single network. The framework consists of two innovative fusion schemes. Firstly, unlike existing multimodal methods that necessitate individual encoders for different modalities, we verify that multimodal features can be learnt within a shared single network by merely maintaining modality-specific batch normalization layers in the encoder, which also enables implicit fusion via joint feature representation learning. Secondly, we propose a bidirectional multi-layer fusion scheme, where multimodal features can be exploited progressively. To take advantage of such scheme, we introduce two asymmetric fusion operations including channel shuffle and pixel shift, which learn different fused features with respect to different fusion directions. These two operations are parameter-free and strengthen the multimodal feature interactions across channels as well as enhance the spatial feature discrimination within channels. We conduct extensive experiments on semantic segmentation and image translation tasks, based on three publicly available datasets covering diverse modalities. Results indicate that our proposed framework is general, compact and is superior to state-of-the-art fusion frameworks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا